首页 > 学习资料 > 教案大全 >

体积和体积单位【通用4篇】

网友发表时间 349614

【路引】由阿拉题库网美丽的网友为您整理分享的“体积和体积单位【通用4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《圆锥的体积》数学教案【第一篇】

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。

(二)核心能力

在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。

(三)学习目标

1、借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。

2、在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。

(四)学习重点

圆锥体积公式的理解,并能运用公式求圆锥的体积。

(五)学习难点

圆锥体积公式的推导

(六)配套资源

实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水

二、教学设计

(一)课前设计

1、复习任务

(1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。

(2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。

设计意图:通过复习物体的体积公式以及圆锥体积的`推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。

(二)课堂设计

1.情境导入

(出示沙堆)

师:你们有办法知道这个沙堆的体积吗?

学生自由发言,提出各种办法。

预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等

师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题

设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。

2、问题探究

(1)观察猜想

师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?

学生自由发言。

(圆柱,圆柱的底面是圆,圆锥的底面也是圆……)

师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)

学生猜想。

(2)操作验证

师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。

实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。

实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。

1号圆锥2号圆锥3号圆锥

次数

与圆柱是否等底等高

学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。

(3)交流汇报

①汇报实验结果

各组汇报实验结果。

②分析数据

师:观察全班实验的数据,你能发现什么?

(大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)

师:什么情况下,圆柱刚好能装下三个圆锥的水?

各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。

师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?

老师用标准教具装沙土再演示一次,加以验证。

③归纳小结

师:谁能来总结一下,通过实验我们得到的结果是什么?

(4)公式推导

师:你能把上面的试验结果用式子表示吗?(学生尝试)

老师结合学生的回答板书:

圆锥的体积公式及字母公式:

圆锥的体积=×圆柱的体积

=×底面积×高

S=sh

师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

进一步强调等底等高的圆锥和圆柱才存在这种关系。

设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。

考查目标1、2

(5)实践应用

师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重,这堆沙子大约重多少吨?(得数保留两位小数。)

师:要求沙堆的体积需要已知哪些条件?

(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

学生试做后交流汇报。

已知圆锥的底面直径和高,可以直接利用公式

V=π()h来求圆锥的体积。

师:在计算过程中我们要注意什么?为什么?

注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的圆柱体积的。

3、巩固练习

(1)填空。

①圆柱的体积是12m,与它等底等高的圆锥的体积是()m。

②圆锥的体积是,与它等底等高的圆柱的体积是()m。

③圆锥的底面积是,高是9m,体积是()m。

(2)判断,并说明理由。

①圆锥的体积等于圆柱体积的。()

②圆锥的体积等于和它等底等高的圆柱体积的3倍。()

(3)课本第34页的做一做。

①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?

②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重。这个铅锤重多少克?(得数保留整数)

4、课堂总结

师:这节课你收获了什么?和大家分享一下吧!

圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。

(三)课时作业

1、王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?

答案:30÷2=15(厘米)

××152×30

=×30

=7065(立方厘米)

答:雕成的圆锥的体积是7065立方厘米。

解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1、2

2、看看我们的教室是什么体?(长方体)

要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)

解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。

①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.

②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.

③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.

以上三种情况计算并加以比较,得出结论。

教学难点【第二篇】

帮助学生建立体积是1立方米、1立方分米、1立方厘米的大小表象,能正确应用体积单位估算常见物体的体积.

教学步骤

一、铺垫孕伏.

1.1米、1分米、1厘米,这是什么计量单位?

2.1平方米、1平方分米、1平方厘米,这是什么计量单位?

二、探究新知.

我们学习了长度和长度单位,面积和面积单位.今天我们要学习一个新概念:体积和体积单位.(板书课题:体积和体积单位)

(一)实验观察,建立体积概念.

1.教师演示实验:

第一步:出示有  杯水的玻璃杯,在水面处做一个红色记号.

第二步:在水杯中放入一块石头,在水面处做一个黄色记号.

第三步:拿出石块后,再放入一大些的石块,在水面处做绿色记号.

观察思考:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这

个现象,说明什么?

汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升.

石块大占据空间大,水面上升得高;

石块小占据空间小,水面上升得低.

2.学生分组实验.

实验方法:

第一步:拿出装满细沙的杯子,把细沙倒在一边.

第二步:把一木块放入杯子里,再把倒出的沙装回杯子里.

第三步:把杯中细沙倒出,把一大些的木块放入杯子里,再把倒出的沙装回杯子里.

观察思考:出现了什么结果?这说明了什么?

汇报归纳:放入大木块,外边剩的沙多;放人小木块外边剩的沙少.

这说明木块也占据了杯子的空间.木块大占据空间大,木块小占据空间小.

3.总结两次实验结果.

教师提问:以上的两个实验说明了什么?

学生归纳:物体都占据空间,物体大占据空间大,物体小占据空间小.

教师明确:把物体所占空间的大小叫做物体的体积.(板书)

4.比较物体体积的大小.

实物比较:字典和大词典  桌子和椅子 水桶和茶叶桶 课本和练习本

(教师出示一组体积接近的物体)提问:这两个物体谁的体积大?

(二)认识体积单位.

教师指出:在实际生活和生产中,有时只凭感觉是无法判断出谁大谁小的,这就要我们

精确地计量物体的体积.计量体积就要用体积单位,常用的体积单位有立

方厘米、立方分米、立方米(板书)

1.认识1立方厘米(出示一块1立方厘米的体积模型)

这就是体积为1立方厘米的正方体.

分组观察,然后汇报:你知道了什么?

看一看:1立方厘米的体积比较小,是正方体.

量一量:1立方厘米的正方体的棱长是1厘米.

说一说:棱长1厘米的正方体体积是1立方厘米(板书)

想一想:体积是1立方厘米的物体比较小.

议一议:哪些物体计量体积时使用立方厘米比较恰当?

2.认识1立方分米.(出示一块1立方分米的体积模型)

这就是体积为1立方分米的正方体.

分组观察,然后汇报:你知道了什么?

看一看:1立方分米的体积大一些,是一个正方体.

量一量:1立方分米的正方体的棱长是1分米.

说一说:棱长1分米的正方体,体积是1立方分米.(板书)

想一想:体积是1立方分米的物体比1立方厘米的物体大.

议一议:哪些物体计量体积时使用立方分米比较恰当?

3.认识1立方米.

思考:什么样的物体的体积是1立方米?

(板书:棱长1米的正方体,体积是1立方米)

议一议:哪些物体计量体积时使用立方米比较恰当?

4..比较:这三个体积单位的共同点是什么?不同点是什么?

长度单位、面积单位和体积单位又有什么不同点呢?

长度单位:线段

面积单位:正方形

体积单位:正方体

(三)计量物体的体积.

怎样用这些体积单位计量物体的体积呢?

计量物体的。体积就是一个物体里含有多少个体积单位,它的体积就是多少.(板书)

(四)反馈练习.

1.看图说出物体的体积.

2.用12个1立方厘米的正方体木块摆成不同形状的长方体.它们的体积各是多少?

(都是12立方厘米.不论物体是什么形状,含有几个体积单位,它的体积就是多少)

三、全课小结.

这节课你学了哪些知识?

四、随堂练习.

1.填空.

一块橡皮的体积约是8( )

一台录音机的体积约是20( )

运货集装箱的体积约是40( )

2.连线:学校主席台的体积 24立方厘米

书包的体积 24立方米

碳素墨水盒的体积 24立方分米

3.说说身边的物体的体积大约是多少?

五、课后作业.

下面的图形都是用棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米?

六、板书设计

体积和体积单位

物体所占空间的大小叫做物体的体积.

物体含有多少个体积单位,体积就是多少.

《圆锥的体积》数学教案【第三篇】

教学目标

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

教学重点

圆锥体体积计算公式的推导过程.

教学难点

正确理解圆锥体积计算公式.

教学步骤

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)下载1下载2下载3下载4下载5

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

……

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的.

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

(二)教学例1

1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

学生独立计算,集体订正.

板书:

答:这个零件的体积是76立方厘米.

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积.

(2)已知圆锥的底面直径和高,求体积.

(3)已知圆锥的底面周长和高,求体积.

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

(三)教学例2

1、例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

思考:这道题已知什么?求什么?

要求小麦的重量,必须先求什么?

要求小麦的体积应怎么办?

这道题应先求什么?再求什么?最后求什么?

2、学生独立解答,集体订正.

板书:(1)麦堆底面积:

=×4

=(平方米)

(2)麦堆的体积:

×

=(立方米)

(3)小麦的重量:

735×

≈11078(千克)

答:这堆小麦大约重11078千克.

3、教学如何测量麦堆的底面直径和高.

(1)启发学生根据自己的生活经验来讨论、谈想法.

(2)教师补充介绍.

a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径.也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径.

b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得.

三、全课小结

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

四、随堂练习

1、求下面各圆锥的体积.

(1)底面面积是平方米,高是米.

(2)底面半径是4厘米,高是21厘米.

(3)底面直径是6分米,高是6分米.

2、计算并填表

3、判断对错,并说明理由.

(1)圆柱的体积相当于圆锥体积的3倍.()

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1.()

(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()

五、布置作业

一堆煤成圆锥形,底面半径是米,高是米.这堆煤的体积有多少立方米?如果每立方米煤约重吨,这堆煤约有多少吨?

六、板书设计

《圆锥的体积》数学教案【第四篇】

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

教具准备:

长方体、正方体、圆柱体等,根据教材第14页练一练第1题自制的圆锥,演示测高、等底、等高的教具

演示得出圆锥体积等于等底等高圆柱体积的的教具。

教学重点:

掌握圆锥的特征。

教学难点:

理解和掌握圆锥体积的计算公式。

教学过程:

一、复习引新

1.说出圆柱的体积计算公式。

2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。

这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

二、教学新课

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

4.学生练习。

5.教学圆锥高的测量方法。(见课本第13页有关内容)

6.让学生根据上述方法测量自制圆锥的高。

7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)

(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

(3)实验操作,发现规律。

在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看

你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验

得出只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积

=底面积高

用字母表示:V=Sh

(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?

8.教学例l

(1)出示例1

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、巩固练习

1.做练一练第2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。

2.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

3.做练习三第3题。

让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。

四、课堂小结

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

五、课堂作业

练习三第4、5题。

相关推荐

热门文档

20 349614