首页 > 学习资料 > 教案大全 >

有理数的除法教案通用4篇

网友发表时间 471838

【前言导读】这篇优秀教案“有理数的除法教案通用4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

有理数的除法教案【第一篇】

有理数的乘除法

一、教学目标

知识与技能:

①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。

②会进行有理数乘法运算。

③了解有理数的倒数定义,会求一个数的倒数。

过程与方法:

①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。

②提高学生的运算能力

情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。

二、 教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法中的符号法则。

三、教学过程

(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课

前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法。同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?

如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝

乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法

(二)学生探索新知,归纳法则

学生分为四个小组活动,进行乘法法则的探索

设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:

(1)向右爬行,3分钟后的位置?

(2)向左爬行,3分钟后的位置?

(3)向右爬行,3分钟前的位置?

(4)向左爬行,3分钟前的位置?

(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。

为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。

(1) 情形一:蜗牛在现在位置的右边6㎝处。式子表示为:

(+2)(+3)=+6

数轴表示如右:

(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为: (-2)3=-6

数轴表示如右:

(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为: (+2)(-3)=-6

数轴表示如右

(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为: (-2)(-3)=+6

数轴表示如右:

仔细观察上面得到的`四个式子:

(1)(+2)(+3)=+6

(2)(-2)3=-6

(3)(+2)(-3)=-6

(4)(-2)(-3)=+6

根据你对乘法的思考,你得到什么规律?

(三)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)(+)=( ) 同号得

(-)(+)=( ) 异号得

(+)(-)=( ) 异号得

(-)(-)=( ) 同号得

b.任何数与零相乘,积仍为 。

(四)师生共同用文字叙述有理数乘法法则。

归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

(五) 运用法则计算,巩固法则。

例1计算:(1) (-5) (2) (-7) (3) (-3) (4)(-3) (- )

引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数。

例2. 见课本P30页

(六)分层练习,巩固提高。

(1)计算(口答):

① ② ③ ④

⑤ ⑥ ⑦ ⑧

四。课题小结

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

(2)如何进行两个有理数的乘法运算: 先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

五。作业布置

课本P30页练习1,2,3.

有理数的乘法

(第2课时)

一、教学目标:

1、经历探索多个有理数相乘的符号确定法则。

2、会进行有理数的乘法运算。

3、通过对问题的探索,培养观察、分析和概括的能力。

二、教学重点和难点

学习重点:多个有理数乘法运算符号的确定

学习难点:正确进行多个有理数的乘法运算

三、教学过程

(一)、学前准备

请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?

结果怎么样,你能明白其中的数学道理吗?

(二)、探究新知

1、观察:下列各式的积是正的还是负的?

234(-5),

23(-4)(-5),

2(3) (4)(-5),

(-2) (-3) (-4) (-5).

思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

分组讨论交流,再用自己的语言表达所发现的规律:

几个不是0的数相乘,负因数的个数是 偶数 时,积是正数;负因数的个数是 奇数 时,积是负数。

2、利用所得到的规律,看看翻牌游戏中的数学道理。

(三)、新知应用

1、例题3,(30页)例3,

请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由 几个数相乘,如果其中又因数为0,积等于0

例:(-)O (-)

师生小结:几个数相乘,如果其中又因数为0,积等于0

2、练习

计算

1)、58(7)() 2)、

四、课堂小结

1、通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0

五。作业布置

一、选择

1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )

A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负

2.若干个不等于0的有理数相乘,积的符号( )

A.由因数的个数决定 B.由正因数的个数决定

C.由负因数的个数决定 D.由负因数和正因数个数的差为决定

3.下列运算结果为负值的是( )

A.(-7)(-6) B.(-6)+(-4); (-2)(-3) D.(-7)-(-15)

4.下列运算错误的是( )

A.(-2)(-3)=6 B.

C.(-5)(-2)(-4)=-40 D.(-3)(-2)(-4)=-24

二、计算 1、(-) 2、 .

有理数的乘法

(第3课时)

一、教学目标:

1、熟练有理数的乘法运算并能用乘法运算律简化运算。

2、让学生通过观察、思考、探究、讨论,主动地进行学习。

3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。

二、教学重点和难点

教学重点:正确运用运算律,使运算简化

教学难点:运用运算律,使运算简化

三、教学过程

一、学前准备

1、下面两组练习,请同学们选择一组计算。并比较它们的结果:

1)(-7)8 8(-7)

[(-2)(-6)]5 (-2)[(-6)5]

2)(- )(- ) (- )(- )

[ (- )](-4) [(- )(-4)]

3)

请以小组为单位,相互检查,看计算对了吗?

二、探究新知

1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。

2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?

3、归纳、总结

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

三、新知应用

1、例题

用两种方法计算 ( + - )12

2、看谁算得快,算得准

1)(-7)(- ) 2) 9 15.

四、课堂小结

怎么样,这节课有什么收获,还有那些问题没有解决?

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

五。作业布置

1、(-85)(-25) 2、(- )15(-1 );

3、( ) 4、 (7).

5、-9(-11)+12(-9) 6、

有理数的除法

(第4课时)

一、教学目标:

1、理解除法是乘法的逆运算;

2、掌握除法法则,会进行有理数的除法运算;

3、经历利用已有知识解决新问题的探索过程。

二、教学重点和难点

教学重点:有理数的除法法则

教学难点:理解商的符号及其绝对值与被除数和除数的关系

三。教学过程

(一)、学前准备

1、师生活动

1)、小明从家里到学校,每分钟走50米,共走了20分钟。

问小明家离学校有 1000 米,列出的算式为 50 20=1000 .

2)放学时,小明仍然以每分钟50米的速度回家,应该走 20 分钟。

列出的算式为 1000 =20

从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算

(二)、合作交流、探究新知

1、小组合作完成

比较大小:8(-4) 8(一 );

(-15)3 (-15)

(一1 )(一2) (-1 )(一 )

再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 乘这个数的倒数。

2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

2,运用法则计算:

(1)(-15)(-3); (2)(-12)(一 ); (3)(-8)(一 )

3,师生共同完成P34例5.

(三)1、练习:P35

2、P35例6、例7、

3、练习: P36第1、2题

四。课堂小结

通过这节课的学习,你的收获是:

1)、除以一个不等于0的数,等于 乘这个数的倒数。

2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

五。作业布置

1、计算

(1)(+48)(+6); (2) ;

(3)4(-2); (4)0(-1000).

2、计算。

(1)(-1155)[(-11)(+3)(-5)]; (2)375

1、P39第1、2、3、4题

有理数的除法

(第5课时)

一、教学目标:

1、学会用计算器进行有理数的除法运算。

2、掌握有理数的混合运算顺序。

3、通过探究、练习,养成良好的学习习惯

二、教学重点和难点

1、学习重点:有理数的混合运算

2、学习难点:运算顺序的确定与性质符号的处理

三、教学过程

(一)、学前准备

1、计算

1)()() 2)2+(8)2

(二)、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。

3、结合问题1,阅读课本P36P37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

5、阅读P36,并动手做做

三、新知应用

1、计算

1)、186(2) 2)11+(22)3(11)

3)() (100)

四。课堂小结:请你回顾本节课所学习的主要内容:

1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

2、计算器的使用。

五、作业 1、P39第7题(4、5、7、8)、 第8题

有理数的除法【第二篇】

教学目标 

1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;

2.了解倒数概念,会求给定有理数的倒数;

3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节教学的重点是熟练进行运算,教学难点 是理解法则。

1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。

2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。

(二)知识结构

(三)教法建议

1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。

2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。

3.理解倒数的概念

(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。

(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。

(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。

4.关于倒数的求法要注意:

(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可。

(2)正数的倒数是正数,负数的倒数仍是负数。

(3)负倒数的定义:乘积是-1的两个数互为负倒数。

教学设计示例

一、素质教育目标

(一)知识教学点

1.了解有理数除法的定义。

2.理解倒数的意义。

3.掌握有理数除法法则,会进行运算。

(二)能力训练点

1.通过有理数除法法则的导出及运算,让学生体会转化思想。

2.培养学生运用数学思想指导思维活动的能力。

(三)德育渗透点

通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性。

(四)美育渗透点

小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美。

二、学法引导

1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力。

2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

三、重点、难点、疑点及解决办法

1.重点:除法法则的灵活运用和倒数的概念。

2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值。

3.疑点:对零不能作除数与零没有倒数的理解。

四、课时安排

1课时

五、教具学具准备

投影仪、自制胶片、彩粉笔。

六、师生互动活动设计

教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成。

七、教学步骤

(一)创设情境,复习导入

师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题。

教法说明同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.

(二)探索新知,讲授新课

1.倒数。

(出示投影1)

4×( )=1; ×( )=1; ×( )=1;

0×( )=1; -4×( )=1; ×( )=1.

学生活动:口答以上题目。

教法说明在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法。

师问:两个数乘积是1,这两个数有什么关系?

学生活动:乘积是1的两个数互为倒数。(板书)

师问:0有倒数吗?为什么?

学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数。

师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是。

提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

教法说明教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是。对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习。

(出示投影2)

求下列各数的倒数:

(1); (2); (3);

(4); (5)-5; (6)1.

学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求。

2.

计算:8÷(-4).

计算:8×=? (-2)

∴8÷(-4)=8×.

再尝试:-16÷(-2)=? -16×=?

师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

学生活动:同桌互相讨论。(一个学生回答)

师强调后板书:

[板书]

教法说明通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力。

(三)尝试反馈,巩固练习

师在黑板上出示例题。

计算(1)(-36)÷9, (2)÷.

学生尝试做此题目。

(出示投影3)

1.计算:

(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

2.计算:

(1)÷; (2)(-)÷;

(3)÷; (4)÷(-1).

学生活动:1题让学生抢答,教师用复合胶片显示结果。2题在练习本上演示,两个同学板演(教师订正).

教法说明此组练习中两个题目都是对的直接应用。1题是整数,利用口答形式训练学生速算能力。2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算。

提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

学生活动:分组讨论,1—2个同学回答。

[板书]

2.两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何不等于0的数,都得0.

教法说明通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法。

(四)变式训练,培养能力

回顾例1   计算:(1)(-36)÷9; (2)÷.

提出问题:每个题目你想采用哪种法则计算更简单?

学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单。

(2)题仍用除以一个数等于乘以这个数的倒数较简单。

提出问题:-36:9=?;:=?它们都属于除法运算吗?

学生活动:口答出答案。

(出示投影4)

例2  化简下列分数

(1); (2); (3)或3:(-36)

(4); (5).

例3  计算

(1)÷(-6); (2)-÷×;

(3)(-6)÷(-4)×.

学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演。

教法说明例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算。例3培养学生分析问题的能力,优化学生思维品质:

如在(1)÷(-6)中。

根据方法①÷(-6)=×=.

根据方法②÷(-6)=(24+)×=4+=.

让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算。(2)(3)小题也是如此。

(五)归纳小结

师:今天我们学习了及倒数的概念,回答问题:

1.的倒数是__________________;

2.;

3.若、同号,则;

若、异号,则;

若,时,则;

学生活动:分组讨论,三个学生口答。

教法说明对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力。

八、随堂练习

1.填空题

(1)的倒数为__________,相反数为____________,绝对值为___________

(2)(-18)÷(-9)=_____________;

(3)÷(-)=_____________;

(4);

(5)若,是;

(6)若、互为倒数,则;

(7)或、互为相反数且,则,;

(8)当时,有意义;

(9)当时,;

(10)若,,则,和符号是_________,___________.

2.计算

(1)-÷×;

(2)(-12)÷〔(-3)+(-15)〕÷(+5).

九、布置作业

(一)必做题:1.仿照例1、例2自编2道题,同桌交换解答。

2.计算:(1)×÷;

(2)-6÷(-)×.

3.当,,时求的值。

(二)选做题:1.填空:用“>”“<”“=”号填空

(1)如果,则,;

(2)如果,则,;

(3)如果,则,;

(4)如果,则,;

2.判断:正确的打“√”错的打“×”

(1)( );

(2)( ).

3.(1)倒数等于它本身的数是______________.

(2)互为相反数的数(0除外)商是________________.

教法说明必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力。

选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会。

十、板书设计 

有理数的除法教案【第三篇】

教学目标:

知识与技能:理解倒数的意义,会求有理数的倒数。了解有理数除法的意义,理解有理数除法的法则,会进行有理数的除法运算.

过程与方法:通过有理数除 法的法则的导出及运用,学生能体会转化的思想。

感知数学知识具有普遍联系性、相互转化性。

情感与态度:通过有理数乘法运算的推广,体会知识系统的完整性。

体会在解决问题的过程中与他人合作的重要性。通过对解决问题的过程的反思,获得解决问题的经验。

教学重点:有理数的除法法则及其运用

教学难点:(1)商的符号的确定。(2)0不能作除数的理解。

教材分析:乘法与除法互为逆运算,小学已经学过。通过实例引入,说明它在有理数的范围内也成立。本节内容在学生已有有理数乘法知识的基础上 ,通过学生经历从具体情景中抽象出法则的过程,使他们发现其中的规律,掌握必要的运算技能,使学生在有理数运算的学习中继续发展数感,在符号法则的学习中增强符号感。

教具:多媒体课件

教学方法:引导发现法 类比归纳法

课 时安排:一课时

创设情境

问题:有四名同学参加数学测验,以90分为标准,超过得分数记为正数,不足的分数记为负数,评分记录 如下:+5、-20。-19。-14。求:这四名同学的平均成绩是超过80 分或不足80分? 学生在教师的激情 互动中,思考列式(+5-20-19-14)÷4

化简:(-48)÷4=?(但不知如何计算)

揭示课题

从实际生活引入,体现数学知识源于生活及数学的现实意义。

复习回顾 前置补偿

求下列各数的倒数:

(1)- ;(2)4 ;(3)(4)-;(5)-1

学生对老师的`提问进行抢答 为学习今天的有理数除法先复习小学倒数概念

探究活动一课件出示练习题

填空:

① 8÷(-2)=8×( );

② 6÷(-3)=6×( );

③ -6÷( )=-6× ;

④ -6÷( )=-6× 。

教师强调0没有倒数。 学生填空后试着得出互为倒数的概念(乘积是1的两个数互为倒数)

培养学生发现问题总结问题的能力

探究活动二引例1 计算:(-6)÷2

根据除法是乘法的逆运算,引导学生 将有理数的除法运算转化为学生已知的乘法运算。

强调0不能作除数。(举例强化已导出的法则) 学生自主探究有理数的除法运算转化为学生一致的乘法运算

学生归纳导出法则(一):除以一个数等于乘以这个数的倒数

小组合作交流探究发现结果

探究活动三

(举例强化已导出的法则)

例1计算(1)(-105)÷7[

(2)6÷(-)

(3)(-)÷(-)

教师强调(1)除法法则与乘法法则相近,只是“乘”“除”二字不同,很容易记。.(2)此法则是有理数的除法运算的又一种 方法。

学生自己观察回忆,进行自主学习和合作交流, 得出有理数的除法法则(两数相除,同号得正,异号得负,并把绝对值相乘。0除以任何不等于0的数都得0)

激发学生学习的积极性和主动性满足学生的表现欲和探究欲)

强化练习 课本 例2计算 :

(1)(- )÷(-6)÷(- )

(2)( - )÷(- )

学生试着独立完成 有理数的除法法则的灵活应用,并渗透了除法、分数、比可互相转化。

反馈矫正

课本69—70页第1、2、3题 学生独立完成并小组互评 巩固法则,调动学生积极性

归纳小节 1、 学习内容:倒数的概念及求法;有理数的除法

2、 通过本节的学习,你有哪些体会?请与同学交流。

同学之间进行交 流,小结本节内容 培养了学生总结问题的能力

作业布置 必做题:课本70页第1,3,4题

选做题:若ab≠0,则 可能的取值是_______. 综合考查,学以致用。 不同的学生得到不同的发展

附:板书设计

有理数的除法

例1计算: 练习处:

例2 计算:

教学反思:

《有理数的除法》一课是传统内容,在设计理念上,我努力体现“以学生为主”的思想,从学生已有的知识经验出发,展开教学,使学生自然进入状态,一切都很顺畅,达到了课前设计的构想。在教学中,突出了学生在教学学习过程的主体地位,突出了 探索式学习方式,让学生经历了观察、实践、猜测、推理、交流、反思等活力,既应用了基本概念、基础知识又锻炼了学生能力 。

在这节课中,本人认为也有不足之处,由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。

有理数的除法【第四篇】

教学反思是指教师对教育教学实践的再认识、再思考,并以此来总结经验教训,进一步提高教育教学水平。下面是由小编为大家带来的关于有理数的除法教学反思,希望能够帮到您!

有理数的除法教学反思一

《有理数的除法》是学生已经掌握有理数乘法的基础上进行的。教学内容包括:1、有理数除法法则;2、倒数的求法;3、熟练的应用法则进行计算。新课程标准告诉我们初中数学是要让学生经历知识的产生过程,在学生的自主探索和合作交流中掌握知识,形成技能,发展智力。在数学活动中形成数学思想,学会数学的学习方法。因此在本课时中,我重要体现一下几点:

一、注重知识的迁移,做到以旧代新。

有理数的除法和小学数学的除法的计算方法及其相似。不同之处只是符号问题。所以在新课教学中先复习“小学的除法是乘法的逆运算”和“除以一个数等于乘以这个数的倒数”,再告诉学生这些在有理数范围内同样适用。运用新旧知识的迁移,降低了教学难度,使学生能舒畅的根据乘法算式写出除法算式,为下面探索法则铺平道路。同时也让学生感受以旧代新这种便捷的学习方法。

二、注重自主探索,体验知识的产生过程。

本课在教学过程中,注重学生主体意识的培养,鼓励学生用自己喜欢的方法进行探索学习。遵循知识的发展规律和学生的认知规律—由易到难,重视学生的亲身经历。 学生以小组合作的方式通过观察一组算式,找出被除数、除数、商的符号特征和绝对值的特点,进而猜测、推理出一般的除法算式的特点,最后归纳总结除法法则。学生亲历了知识产生的过程,将知识内化。

三、注重分层教学,让不同层次的学生学有所得。

为了让不同的学生在数学上有不同的发展,一是课堂提问时根据不同难度的问题选择不同的学生;二是通过设计有梯度的习题满足不同层次的学生;三是小组活动时,发挥优生的作用,采取一帮一的方法使学困生有所收获。尽量做到全面兼顾,提高课堂实效。

四、注重突出重点,提高课堂效率。

教学中突出重点,突破难点。让学生在自主探索中弄清除法的两种运算方法:1、在除式的项和数字不复杂的情况下直接运用除法法则求解,同时遵循“符号优先”原则,即先确定符号,再把绝对值相除。2、在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算法则解决问题。

在这节课中不足之处有:由于学生的层次差异,少数学习有困难的学生明显觉得信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题;同时没有很好的把握教学时间,最后的拓展题没有时间展开讲解,有理数除法的应用没完成;教学中没有极大可能的调动学生的积极性。

有理数的除法教学反思二

通过自己在初一的数学有理数的除法教学过程中,有那么一点感触,特和大家一起分享一下。

有理数的除法是学生已经掌握有理数加法、减法、乘法的基础上进行的,这些运算为学习有理数除法做了铺垫。其教学内容包括:1、有理数除法法则;2、倒数的求法;3、熟练的应用法则进行计算。新课程标准告诉我们初中数学是要让学生经历知识的产生过程,在学生的自主探索和合作交流中掌握知识,形成技能,发展智力。在数学活动中形成数学思想,学会数学的学习方法。因此在本课时中,我主要体现一下几点:

首先,注重知识的迁移,做到以旧代新。 有理数的除法和小学数学的除法的计算方法及其相似。不同之处只是符号问题。所以在新课教学中先复习“小学的除法是乘法的逆运算”和“除以一个数等于乘以这个数的倒数”,再告诉学生这些在有理数范围内同样适用。运用新旧知识的迁移,降低了教学难度,使学生能舒畅的根据乘法算式写出除法算式,为下面探索法则铺平道路。同时也让学生感受以旧代新这种便捷的学习方法。

其次,注重自主探索,体验知识的产生过程。 本课在教学过程中,注重学生主体意识的培养,鼓励学生用自己喜欢的方法进行探索学习。

相关推荐

热门文档

20 471838