首页 > 学习资料 > 教案大全 >

人教版六年级下册数学教案【通用5篇】

网友发表时间 451495

【路引】由阿拉题库网美丽的网友为您整理分享的“人教版六年级下册数学教案【通用5篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

2021最新人教版六年级数学下册教案【第一篇】

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解: 35÷ =75(千克)

4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

教学后记:

2021人教版六年级下册最新数学教案【第二篇】

教学目的:

1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:掌握圆锥体积的计算公式。

教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

教学准备:圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。

教学过程:

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

(2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )还可以怎么说?

板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:V=1/3Sh

拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?

强调:“等底等高”。

问:Sh表示什么?为什么要乘1/3?

练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

说明:不要漏乘1/3,计算时能约分的要先约分。

3、巩固练习:完成练习四第4题。

4、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上。做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

① 这道题已知什么?求什么?

② 求圆锥的体积必须知道什么?

③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

① 圆柱的侧面积等于多少?

② 圆柱的表面积的含义是什么?怎样计算?

③ 圆柱体积的计算公式是什么?

④ 圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

人教版六年级下册数学教案【第三篇】

教学目标:

1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。

3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

重点、难点:

1.教学重点:理解、掌握杠杆平衡的规律。

2.教学难点:让学生综合应用所学的知识和方法解决实际问题。

教学准备:

竹竿,棋子,塑料袋(多媒体课件)

教学过程

一、准备材料,导入活动:

1.检查课前布置的制作工具(简单杠杆)的作业。

学生对照制作要求,自查和同组互相检查。

小黑板或媒体出示制作要求:

(1)准备的竹竿长1m,尽量做到粗细均匀。

(2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。

(3)从中点处每隔8cm做一个刻度记号,尽量等距离。

拿出准备好的棋子和塑料袋。检查大小是否一样。

2.揭示课题:有趣的平衡(板书)

二、动手实践,探索规律

1、活动一:探索特殊条件下竹竿保持平衡的规律:

(1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?

①学生思考,回答问题。“两边所放的棋子要同样多。”

②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。

(2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?

①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”

②演示。如:

左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。

(3)小结:

你有什么体会?

要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

2.活动二:探索在一般条件下竹竿保持平衡的规律(A)

(1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?

①也放4个棋子行不行?会产生什么结果?

②应该放几个?

“放3个。”

(2)如果左边的塑料袋在刻度6上放1个棋子。

①右边的塑料袋在刻度3上放几个呢?

学生交流,各自说出自己的见解。

②右边的塑料袋在刻度2上呢?

学生不难得出结果,放3个。

③右边的塑料袋在刻度1上呢?

学生不难得出结果,放6个。

(3)小结:

师:你有什么体会?

左右两边棋子个数与刻度数的积要相等。

3.活动三:探索在一般条件下竹竿保持平衡的规律(B):

(1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?

(2)实验活动:

①学生动手进行实验活动。

②将实验结果记录下来。

③教师提供表格,引导学生展开活动。

右刻度

所放棋子数

乘积

(3)汇报结果。

学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

(4)从表中你发现刻度数和所放棋子数成什么比例?

学生观察表中两个量的变化情况,不难发现这两种量成反比例

三、应用规律,体会揣摩

1.基本练习:

母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?

提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程

60x=12×15

解方程得x=3

答:她坐的地方距支点3分米才能保持平衡。

2.综合练习:

桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?

提示:(1)根据臂长和质量成反比例

(2)先确定每个托盘中所放砝码的总质量,在确定臂长。

四、回顾整理,反思提升

1.谈收获。

师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?

2.评价。

师:你对自己这节课的表现满意吗?

可采取学生自评,互评,老师评价的方式进行。

板书设计:

有趣的平衡

要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

作业设计

基础:

1、用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?

综合:

2、有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?

提示:

(1)可以像例题中一样,用列表的方法做。

(2)根据臂长与质量成反比,列方程求解。

人教版六年级下册数学教案【第四篇】

课前准备

教师准备 PPT课件

教学过程

⊙提问导入

1.提问激趣。

根据“甲是乙的”,你能想到什么?

预设

生1:乙是甲的。

生2:甲比乙少,乙比甲多。

生3:甲是甲、乙之差的5倍。

生4:甲是甲、乙之和的。

生5:乙比甲多20%。

……

2.导入新课。

这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

⊙回顾与整理

1.分数(百分数)的一般应用题。

(1)分数(百分数)乘法应用题的特征及解题关键各是什么?

①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

(2)分数(百分数)除法应用题的特征及解题关键各是什么?

①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

(3)分数(百分数)应用题的常见题型有哪些?如何解答?

①求甲是乙的几分之几(百分之几):甲÷乙。

②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

③已知甲比乙多(少)几分之几,求甲:乙×。

④已知甲比乙多(少)几分之几,求乙:甲÷。

⑤求百分率。

发芽率=×100%

小麦的出粉率=×100%

产品的合格率=×100%

出勤率=×100%

⑥求利息:利息=本金×利率×时间

2.分数应用题的特例——工程问题。

(1)什么是工程问题?

明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

(2)解决工程问题的关键是什么?

明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

(3)工程问题的数量关系式有哪些?

预设

生1:工作总量=工作效率×工作时间

生2:工作效率=工作总量÷工作时间

生3:工作时间=工作总量÷工作效率

生4:合作时间=工作总量÷工作效率和

人教版六年级下册数学教案【第五篇】

教材及学情简析:

本节课认识圆柱是在学生学习了几种平面图形以及长方体和正方体的基础上进行教学的,学生已具备了一定的空间观念。圆柱又是一种比较常见的立体图形,在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。因此,教学时可以从直观入手,帮助学生形成圆柱的正确表象,让学生通过观察、想象、操作、推理、讨论等活动,认识圆柱的底面、侧面和高,掌握圆柱的特征,探索圆柱的侧面展开图,进而发展学生的空间观念,引导学生学会从数学的角度去关注生活中的现象或问题。

此外,该学段的学生已具备了初步的独立解决问题的能力,教学时可以充分发挥学生的自主性,合理运用学习方法,指导学生通过看书自学、动手实践、合作交流等方式获取数学知识。

教学目标:

1、帮助学生建立圆柱的正确表象,知道圆柱各部分的名称,在操作活动中探索圆柱的特征。

2、通过观察、想象、操作、讨论等活动,培养学生发现问题,分析问题和解决问题的能力,发展学生的空间观念。

3、引导学生学会从数学的角度去关注生活中的问题,感受数学学习的价值。

教学重点:建立圆柱的正确表象,认识圆柱各部分的名称及其特征。

教学难点:通过猜想验证的过程理解圆柱的侧面展开图的特征。

教学准备:课件、圆柱体、长方体、正方体、剪刀等。

教学过程:

一、温故对比引圆柱

1.出示圆。

还记得圆是什么图形吗?(平面图形)

2.出示柱。

老师只要在后面添上一个字,马上就变成立体图形了,同学们猜是什么?

(由圆到圆柱,推想发现圆柱是立体图形。)

3.想圆柱。

相信同学们都见过圆柱,想想印象中的圆柱是长什么样子的?

(唤起学生对圆柱的已有经验。)

4.摸圆柱。

老师为每组准备了一袋立体图形(袋子里有圆柱、长方体和正方体),里面就有圆柱,同学们尝试不用眼睛看,就凭双手摸出来。

5.谈圆柱。

在刚才摸的过程中,你是怎样区分圆柱体与长方体、正方体的?

6.引新课。

看来这圆柱还真是与众不同,今天我们就来好好地认识它。

设计意图:通过回忆圆到出现圆柱,是从平面几何到立体几何的过程;从学生凭空思考圆柱的形状到亲身体验摸圆柱的形体,唤起了学生对圆柱的已有经验,更清晰地感知到圆柱体与长方体、正方体的异同,突出圆柱的表面特征。

二、独立自主学圆柱

1.认识圆柱的几何图形。

(出示实物圆柱)这是一个圆柱形的物体,如果从一个角度看它,最多只能看到两个面,所以通常我们把圆柱体画成下面的形状课件演示从实物的圆柱到数学中的圆柱的抽象过程。

2.自学课本,认识圆柱各部分的名称。

同学们拿起圆柱自学课本第31页的内容,看看介绍了圆柱的什么知识。

3.分享自学成果。

4.加深理解,学生互相指一指圆柱的底面、侧面和高。

我们认识了圆柱的底面、侧面和高,请同学们拿起圆柱指给旁边的同学看看。

设计意图:根据教学内容的特点,合理安排学习方式,让学生自学圆柱各部分的名称等最基本的概念,培养学生的自学能力,体验通过自身努力获取知识的成功感,同时也为后面自主探索圆柱侧面展开图的特征做好准备。

三、猜想验证探圆柱

1、以制作一个圆柱的话题为主线,探索圆柱的侧面展开图的特征。

如果要做一个这样的圆柱,需要剪出哪些图形来制作呢?

除了需要两个完全相同的圆做圆柱的底面以外,那侧面应该用什么图形做呢?同学们猜一猜,如果把侧面剪开,展开后可能是什么图形?动手剪一剪看。

怎样剪才能得到长方形?

(通过猜想到动手操作,验证圆柱的侧面沿高剪开得到长方形。)

2.探索圆柱的侧面展开得到的长方形的长和宽与圆柱的底面和高的关系。

为什么剪出来的长方形有长有短、有宽有窄?长方形的长和宽究竟与圆柱的什么有关系呢?同学们讨论讨论。

3.汇报并总结圆柱的侧面展开图的特征。

小结:把圆柱的侧面沿着一条高剪开,展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。(配合课件演示)

4.借助练习巩固特征,并从中渗透圆柱的侧面展开图的其他情况。

⑴ 根据圆柱的侧面选择合适的底面。

⑵ 根据圆柱的底面选择合适的侧面。

设计意图:以制作圆柱为主线,通过动手操作、猜想验证、合作交流等方式,探索圆柱的侧面展开图的特征,这是从认知几何到实证几何的过程。首先让学生掌握侧面展开的一般情况沿高剪开得到长方形;然后再通过练习题的方式将侧面展开的特殊情况(正方形)及其他情况(平行四边形和不规则图形)加以延伸,在保证学生掌握基础的前提下做到数学知识和数学思想的有益拓展。

四、梳理新知用圆柱

1.梳理新知。

⑴ 师导。

同学们看,我们今天学到了关于圆柱的什么知识?

⑵ 生谈。

请同学们当推销员介绍一下你所认识的圆柱

2.运用新知。

⑴ 基本练习(以书面的形式出现)。

① 圆柱的上下两个面叫做( )面,它们是( )的两个圆。

② 圆柱有一个曲面叫做( )面。

③ 圆柱两个底面之间的距离叫做( )。圆柱有( )条高,它们的长度都( )。

④ 如果把圆柱的侧面沿着一条( )剪开,展开后得到一个( ),它的长等于圆柱底面的'( ),宽等于圆柱的( )。

⑵ 判断说明。

判断下面的图形是不是圆柱,为什么?

3.回归生活,发现圆柱。

在生活中,你看见过哪些物体是圆柱形的?

设计意图:梳理新知是一个非常重要的过程,先由老师引导总结的目的是为了照顾全体,再让学生互相介绍今天所学的知识,是为了每一个学生主动参与其中。而练习的设计则分为三个层面,先是通过书面练习及时检查全体学生对基本知识的掌握情况,然后在这基础上让学生尝试运用新知解决问题,接着让学生带着新知回归生活,发现早已存在于自己身边而未曾察觉的圆柱形物体,从而感受数学与生活的联系。

五、欣赏了解悟圆柱

1.欣赏自然界以及人类生活、生产中有关圆柱的图片。(课件演示)

圆柱在咱们生活中随处可见,下面让我们一起走进圆柱的世界

2.介绍圆柱的高在生活中的其他叫法。

(高的别称是知识的拓展,也是为后续学习圆柱的表面积和体积做准备。)3.感悟圆柱,畅谈收获。

同学们,只要我们用发现的眼睛看生活,其实,生活中处处都充满着数学,看完刚才的图片,你有什么想说的吗?

4.放大圆柱的内涵介绍可乐罐的奥秘。

有没有发现可乐、百事、雪碧、健力宝等等的这类罐装饮料,它们的形状、大小都是一样的,这里面就隐藏着关于圆柱的商业秘密,想知道吗?

设计意图:借助多媒体课件播放有关圆柱的图片,让学生知道原来自然界里到处都有圆柱,只是我们没有留意、没有发现而已。而聪明的前人早已意识到圆柱的独特之处,并懂得将其特征运用在生活和生产当中,从而使学生感悟到圆柱(数学)那无穷无尽的魅力和人类智慧的无限。最后介绍可乐罐的奥秘,是为了将学生对圆柱的认识面再往深层次扩大,惊叹数学的奇妙之余,达到课尽,而意未尽的效果,促使学生越来越喜欢数学

六、学以致用做圆柱

课后作业:请同学们利用课本第147页的图样,自己动手做一个圆柱。

设计意图:学是为了用。所谓数学来源于生活,最后还得学会用回生活,这是学习数学的最终目的,也是体现数学学习的价值所在。以做圆柱作为课后的作业,一是提供了巩固圆柱最基本的特征和学以致用的机会;二是让学生有一个亲身体验做一个圆柱的过程,为课外创造一个交流数学的话题。

板书设计:

认识 圆柱

2个底面:是完全相同的两个圆

无数条高:两个底面之间的距离

设计意图:简明扼要,突出教学重点,帮助学生整理新知;设计别出心裁,吸引学生的注意力,大大提高教学效益。

相关推荐

热门文档

20 451495