首页 > 学习资料 > 教案大全 >

六年级数学上册教案(汇总4篇)

网友发表时间 222847

【路引】由阿拉题库网美丽的网友为您整理分享的“六年级数学上册教案(汇总4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

六年级数学上册教案【第一篇】

教学目标:

1、通过解决生活中的`问题,体会数学知识在生活中的作用。

2、培养利用数学知识解决问题的能力。

教学重难点:

利用数学知识解决实际问题。

教学过程:

一、出示情景

一天有个年轻人来到王老板的店里买了一件礼物,这件礼物成本是18元,标价是21元。结果是这个年轻人掏出100元要买这件礼物,王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。

现在问题是: 王老板在这次交易中到底损失了多少钱? 提示:其中损失成本18元,不要算成21元。

二、小组讨论

三、汇报结论

四、小结

王老板和街坊之间事实上互不亏欠。王老板在这次交易中到底损失了97元。

五、全课总结

师:通过这节课,你有什么收获?

生:………

六年级数学上册教案【第二篇】

教学目标:

1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

2、引导学生通过实际操作、画图、计算等方法探索新知。

3、在解决问题的过程中体会比与现实生活的密切联系。

4、在交流算法的过程中体会解决问题策略的多样性。

重点难点:

1、能运用比的意义解决按照一定的比进行分配的实际问题。

2、引导学生通过操作、讨论和交流探索新知

教学方法:

操作

小组合作交流

自主探究

教学过程:

一、组织教学。

1、复习

师:同学们,今天与我们平时上课有什么不同?

紧张吗?(有的说紧张有的说不紧张)

咱们来统计一下,紧张的同学请举手,(生举手)

师数一数,并记录其数据(紧张的有15人,不紧张的有20人)。

你能根据这15人和20人用比的知识或分数的知识说一句话吗?

生可能会有以下几种说法:

(1)紧张的人数与不紧张的人数比是3:4;

(2)紧张的人数是不紧张的人数的3/4;

(3)紧张的人数与全班总人数的比是3:7;

(4)紧张的人数是全班总人数的3/7;

(5)紧张的人数比不紧张的人少1/4;

2、引入课题

师:大家说的真好,可见数学在我们的生活中随处可见,以前我们体验过分数在生活中的应用,今天我们再来体会一下比在我们生活中的应用价值。板书课题:比的应用。

二、探索新知

(一)解决问题一:怎样分合理?

1、提出问题。

师:其实只要有心,随时都可以发现一些数学问题,今天,我们的好朋友笑笑就遇到了一些问题,我们一起来看看她遇到了什么问题。(多媒体出示教学情境图。)

师:根据这幅情境图,你能获得哪些信息?

指名回答,引导学生找出图中所提供的信息,明确所提出的问题:把这些橘子分给一班和二班,怎样分合理?

学生独立思考

2、组织讨论。

让学生先在小组内进行讨论。然后,教师组织学生进行全班交流。

全班交流时,学生可能会提供以下两种分配方案。

方案一:每个班分这筐橘子的一半。

方案二:按一班和二班的人数比来进行分配。

启发学生明确:平均分就是按1:1的比例来分的;在实际生活中有时并不是把一个量平均分,而是要按不同的份量(一定的比例)来进行分配,像这样把一个量按一定的比例进行分配,就叫按比例分配。

师:这节课,我们来学习怎样解决按一定的比进行分配的实际问题。板书:按比例分配

(二)解决问题二:怎样分才是按3:2的比例来分的?

1、提出问题。

师:我们帮笑笑想出了分配的方法,笑笑又问:怎样分才是按3:2的比例来分的呢?

2、操作感知。

让学生用小棒代替橘子,4人—组分一分。[教师给每组相同数量的小棒,但没有告诉学生小棒的根数。(小棒的根数是5的倍数)学生按3:2分小棒,教师巡视,及时了解学生中典型的分法]

3、让学生说一说分的过程中的发现和自己的体会。

学生可能会说出不同的发现,

①发现6:4,9:6、15:10、30:20……的结果都是3:2。

②发现无论怎么分都是按3:2分。

(三)解决问题三:如果有140个橘子,按3:2该怎么分?

1、提出问题。

师:现在有140个橘子,按3:2又应该怎么分?

2、小组讨论。

让学生针对问题把自己的想法在小组内说一说,

教师巡视时,从中了解学生中典型的想法和做法。

3、全班交流。

指名汇报,学生可能会提供以下三种不同的方法。

方法1:通过实际操作解决问题。如下表所示:

一班

二班

30个

20个

30个

20个

方法2:用画图的方法解决问题,如下图所示:

140个

3+2=5?

28×3=84(个)

140÷5=28?

28×2=56(个)

(答略)

方法3:根据分数的意义解决问题,

思考过程如下:

先求分的总份数:3+2=5

因为:一班分5份中的3份,即分到140个的3/5。

二班分到5份中的2份,即分到140个的2/5。

所以:一班分的个数是140×3/5=84(个)

二班分的个数是140×2/5=56(个)

方法4:方程

解设每一份有x个橘子,则一班分3x个,二班分2x个,根据:3份(3x)+2份(2x)=140列出方程:3x

+

2x

=

140并解出方程x=28,一班分3×28

=

84(个),二班分2×28

=

56(个)。

让学生说一说以上三种方法的相同点和不同点

4、引导检验

生思考,小组交流检验方法。

5、小结:

师:说的'真好!我们今天遇到的问题是按一定的比例进行分配的问题,请你们思考:

A这类问题有什么特点?

B解决这类问题的方法是什么?

c解决这类问题的关键是什么?

三、巩固练习

指导学生完成教材第75~76页中“练一练”的第1、7、8题。

四、课堂小结

师:通过这节课,你有什么收获和体会与大家分享?

还有什么疑问要和大家商讨商讨?

六、布置作业

课本第75页练一练的第二题和课本76页的第6题。

教学反思:

本节课在谈话中引出问题复习旧知,为新授做铺垫,同时也让学生切身实地的感受到数学就在我们身边,从而很自然地引出课题。

整节课紧紧围绕三个问题展开,共分两大部分:一、分一分:创设情境,鼓励学生通过操作,在交流不同分法的过程中体会1:1分配的不合理性,产生按比分配的必要性,同时体会按比分配在生活中的实际应用;二、算一算:再有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解决问题的策略解决实际问题。

由于按比分配在生活中的运用很广泛,所以在练习的设计上,主要通过有层次、有坡度的一组问题,让学生用今天所学的知识来解决这些生活上的问题。

存在问题:由于学生个体差异较大,教学在短暂的课堂要面对全体学生,还有个别学生不能顺利准确的解决问题,造成教学效果的不足。为了提高教学效果,加强学生全面发展,在课余时间进行个别辅导,做到有的放矢,因材施教,在课堂上关注学困生,培养学习兴趣从而提高教学效果。

六年级数学上册教案【第三篇】

教学目标:

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

教学重点:

使学生经历从具体情境中抽象出比的过程,理解比的意义,了解比的各部分名称。

教学难点:

理解比的意义,掌握比与比值的区别。

教学过程:

一、情境导入

1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?

预设可能提出的问题:

(1)周长和面积

(2)长比宽多几米?

(3)宽比长短几米?

(4)长是宽的几倍?

(5)宽是长的几分之几?

师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系比。

二、共同探讨,学习新知

(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。

(2)交流小结:

板书:长和宽的比是3比2,记作3:2宽和长的比是2比3,记作2:3

(3)说一说:2∶3和3∶2中,比的前项和后项分别是是几?

(教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)

(二)、完成试一试

在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)

(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

三、教学例

2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)

1、想一想,我们怎样求两人的速度?

2、学生计算答案,汇报填表。

3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

(二)、理解比的意义

1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比 两个数相除)

2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例

1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

(三)、认识“比值”、及与“比”的'区别:

1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?

我们把比的前项除以后项所得的商叫做比值。

2、说说这几个比值分别表示什么?

3、讨论:同学们觉得比与比值的区别在哪里?

(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

(四)、“试一试”

1、完成“试一试”:(学生独立完成,指名板演)

2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

(五)、比、除法和分数的关系

1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)相互关系 区别比 前项 比号(:) 后项 比值除法分数

2、完成“练一练”的1、2、3小题。

3、完成练习十三的第4题。

4、糖水的甜度

(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)你知道哪一杯水更甜吗?为什么?

(2)(出示第三杯糖水,标出糖4克,水100克。)你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

5、知识介绍:

同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”(课件介绍“黄金比”)。

五、总结:

今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

北师大版六年级上册数学优秀教案【第四篇】

一、教学内容分析

本节课是在学生认识了比,理解了比并能用比的知识解释一些简单的生活问题的基础上进行的,又为学生后面学习比的应用打下基础。

二、学生分析

学生对商不变的性质以及分数的基本性质已经熟练的掌握,知识的迁移学生应该很好理解。

三、学习目标(以学生为主语)

1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

3、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

教学重难点:掌握化简比的方法,会把一个比化成最简单的整数比。

四、教学活动(此环节可以是课堂实录)

1.导入

问题:淘气和笑笑各自调制了一杯蜂密水,请问哪杯水更甜?

过程:互相讨论,发表看法,如何比较。(学生发言老师板书)

小结:比较的结果一样甜,分数可以约分比也可以化简。

2.新授

①引入 “最简单整数比”的概念。

最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。

②你还能举一些最简单的整数比的例子吗?如果我们能把比都化成最简单的整数比,就容易计算了!

③出示问题尝试并讨论:

12:8 : 2/5:1/4

1.能不能把整数比化简成最简单的整数比?如何化?

2.能不能把分数比化简成最简单的整数比?如何化?

3.能不能把小数比化简成最简单的整数比?如何化?

④交流

1.化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)

2.怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

3.如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)

⑤介绍比的基本性质

3.练习

1、P51页化简下面各比。(独立完成,集体评讲)

2、练习:做书上练一练的第1、2题。

五、教师反思

比与除法、分数之间有如此密切的联系,利用除法中商不变的性质或分数的基本性质来化简比,这样的教学对学生掌握知识来说比较顺利,但在教学过程中要注重细节的指导,还要相信学生能根据以前的知识找到适合的化简方法,充分给予学生更大的空间。

相关推荐

热门文档

20 222847