首页 > 学习资料 > 教案大全 >

《分数除法》教案【通用4篇】

网友发表时间 1270544

【前言导读】这篇优秀教案“《分数除法》教案【通用4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《分数除法》数学教案【第一篇】

教学目标:

1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:弄清单位1的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教学过程:

一、复习

小红家买来一袋大米,重40千克,吃了,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

(1)吃了是什么意思?应该把哪个数量看作单位1?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。解:设买来大米X千克。x-x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。解:设航模小组有人。

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

教学追记:

本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

分数除法教案【第二篇】

单元目标:

1、理解并掌握分数除法的计算方法,会进行分数除法计算。

2、会解答已知一个数的几分之几是多少求这个数的实际问题。

3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4、能运用比的知识解决有关的实际问题。

单元重点:

理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

单元难点:

理解分数除法的算理,列方程解答分数除法问题

第一课时:分数除法的意义和分数除以整数

教学目标:

1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

×3= (千克) ÷3= (千克) ÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:P28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

A、 ÷2= =,每份就是2个。

B、 ÷2= × =,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

第二课时:一个数除以分数

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求小时走了多少千米,也就是求2个,算式:2×

再求3个小时走了多少千米,算式:2× ×3

(5)综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算÷,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、P31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

第三课时:练习课

第四课时:分数混合运算

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5 (2)+÷4―3×

(3)÷[(+)×] (4)[7+(—)]×(―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

1、教师课件出示例4

2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

3、学生根据提纲尝试解题。

4、全班汇报

(1)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

第五课时:练习课

已知一个数的几分之几是多少求这个数的应用题

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解:35÷ =75(千克)

4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

教学后记:

分数除法教案【第三篇】

教学目标

1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。

2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。

3.培养学生分析能力、知识的迁移能力和语言表达能力。

教学重点和难点

正确的归纳出分数除以整数的计算法则,并能正确地进行计算。

教学过程设计

(一)复习导入

1.投影,看乘法算式写出两道除法算式。

67=42

( )( )=( )

( )( )=( )

问:谁还记得整数除法的意义是什么?

板书:积 一个因数 另一个因数

师:这节课我们来学习分数除法的意义和计算法则。(板书课题)

首先研究分数除法的意义。(板书:意义)

(二)新授教学

1.分数除法的意义。

我们来看下面的问题。(投影出示)

(1)每人吃半块月饼,5人一共吃几块月饼?

问:谁会列式计算?

问:你是怎么想的?

(2)两块半月饼,平均分给5个人,每人分得多少月饼?

问:怎样列式计算呢?

问:没有学过分数除法,得数怎么得来的?

(3)两块半月饼,分给每人半块,可分给几个人?

问:谁会列式计算?

问:为什么这样列式,怎样算出的得数?

观察这三个算式,它们之间有什么联系?

同桌讨论,指名回答。

生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。

板书:积 一个因数 另一个因数

问:与整数除法对比一下,分数除法的意义是什么?

同桌互相说一说,指定2~3名学生说。

板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。

师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。

做一做:(同学们做在书上。投影订正。)

根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。

问:你根据什么写出得数的?

师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)

2.分数除以整数的计算法则。

为什么这样列式?

(2)根据题意画出线段图。

生:把1米平均分成7份,取其中的6份。

(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。

师:有道理,结果也正确,还有别的方法吗?

师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。

学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?

师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。

(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?

生:被除数不变,除号变乘号,除数变成了它的倒数。

(5)试着说一说分数除以整数的计算法则。

板书:分数除以整数( )等于分数乘以这个整数的倒数。

想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)

问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。

计算法则是否会用呢?我们来自测一下。

投影做一做,学生做在书上,投影订正。

(三)巩固练习

1.计算下面各题。(投影)

2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)

(2)题为什么对?举错的说说你的想法?1的倒数是几?

(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?

(4)错在除号没有变成乘号。怎么改?

(5)错在除数没有变成倒数。怎么改?

去计算。

师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。

下面我们计算几道题,看谁能正确运用计算法则。

3.计算:

4.想一想:如果a是一个自然数,

(3)用一个数检验上面的结果是否对。

(四)课堂总结

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

(五)作业

课本32页第3,4,5,6题。

课堂教学设计说明

这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。

六年级上册数学分数除法教案【第四篇】

设计说明

分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

2.重视对相关概念、性质及某些知识间相互关系的复习。

教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

3.重视对学生解决问题能力的培养。

教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

课前准备

教师准备 PPT课件

教学过程

⊙整理复习

1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)

(1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。

×=  ×=  ×18=

÷=  ÷=  21÷=

÷=  ÷=  ×=

①复习分数乘法的计算方法。

(分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)

②复习分数除法的计算方法。

[甲数除以乙数(0除外)等于甲数乘乙数的倒数]

③生独立计算。

④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?

(乘法与除法是互逆运算)

(2)结合×和×18复习分数乘法的意义。

(一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的简便运算,与整数乘法的意义相同)

(3)结合÷和21÷复习分数除法的意义。

(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)

(4)复习分数四则混合运算。

①分数四则混合运算的运算顺序是怎样的?

(与整数四则混合运算的运算顺序相同)

②下面各题怎样简便就怎样算,并说一说算理。

+++

15×

+3÷

3.7×+÷

÷

0.5×

2.复习倒数的意义及相关知识。

(1)什么叫倒数?0为什么没有倒数?

(乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)

(2)写出下面各数的倒数。

5    1

(3)判断下面的说法是否正确。

①一个真分数的倒数一定比这个真分数大。(  )

②一个数乘分数的积一定比原来的数小。(  )

③一个数除以分数的商一定比原来的数大。(  )

3.复习比的意义及相关知识。

(1)(出示课件)说出下面每个比的前项、后项。

2∶5    ∶

(2)结合上题,复习比的意义及比的各部分名称。

(两个数相除又叫做两个数的比,比号前面的数叫做比的。前项,比号后面的数叫做比的后项)

(3)复习比值的意义及求法。

(比的前项除以比的后项,所得的商叫做比值)

(4)复习比与分数、除法的关系。

(根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)

相关推荐

热门文档

20 1270544