首页 > 学习资料 > 教案大全 >

初中数学说课稿【优质4篇】

网友发表时间 487897

【路引】由阿拉题库网美丽的网友为您整理分享的“初中数学说课稿【优质4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

初中数学说课稿【第一篇】

今天我说的课题是“向量的直角坐标运算”,主要研究两类问题:

1、向量的直角坐标运算

2、培养学生的创新精神和实践能力,履行“以学生发展为本”的教育思想。

下面我从三个方面阐述这节课。

第一方面:教材分析

本节的授课内容为“向量的直角坐标运算”,选自人教版中等职业教育国家规划教材《数学》(提高版)第一册第六章第六节,我从四个方面进行教材分析。

(一)教材的地位和作用

向量的直角坐标运算是向量的重要内容,它使向量的运算完全数量化,将数与形紧密地结合起来,使得用向量的方法解决几何问题更加方便,从而极大地提高了学生利用向量知识解决实际问题的能力。

同时,这节课的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要意义。

(二)教材的处理

结合教学参考书和学生的学习能力,我将“向量的直角坐标运算”安排为两课时。本节为第二课时。

根据目前学生的状况以及以往的经验,我发现,虽然这节课的内容比较简单,但由于以前教师讲解得过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,我采用复习提问的形式,师生共同得出向量线性运算的直角坐标运算法则和一个向量的坐标等于向量的终点坐标减去始点相应坐标的结论,直接切入本节课的知识点。之后,由浅入深、由低到高地设计了三个层次的问题,逐步加深学生对向量直角坐标运算的记忆和理解。

由此,我对教材的引入、例题和练习做了适当的补充和修改。

(三)教学重点和难点

根据学生现状、教学要求以及教材内容,我确立本节课的教学重点为:使学生熟练地掌握向量的直角坐标运算。

由于学生的实际情况──运用所学知识分析和解决实际问题的能力较差,我把本节课的难点定为:向量直角坐标运算的应用。

要突破这个难点,关键在于紧扣向量直角坐标运算的相关知识,去发现解决问题的方法。

(四)教学目标的分析

根据教学要求、教材的地位和作用以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为以下三个方面。

1、知识教学目标

能准确表述向量线性运算的坐标运算法则;明确一个向量的坐标等于向量的终点坐标减去始点的相应坐标;掌握用向量的直角坐标运算解决平面几何问题的方法。

2、能力训练目标

培养学生观察、分析、比较、归纳的能力及创新能力;培养学生运用数形结合的方法去分析和解决问题的能力。

3、德育渗透目标

通过学习向量的直角坐标运算,实现几何与代数的完全结合,让学生明白:知识与知识之间、事物与事物之间的相互联系和相互转化;通过例题及练习的学习,培养学生的辩证思维能力,养成勤于动脑的学习习惯。

第二方面:教法与学法分析

现代教学论指出:“教学是师生的多边活动,在教师进行‘反馈—控制’的同时,每个学生也都在进行微观的‘反馈—控制’。”由于任何教学都必须通过学生自身的学习建构才有成效,故本节课采用“发现式教学法”来组织课堂教学。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用。

在教学中借助于计算机课件辅助教学。

第三方面:教学过程

共分为六个环节,具体的时间安排如下:复习提问约4分钟,导入新课约6分钟,创设问题约30分钟,小结约3分钟,布置作业约2分钟。

(一)复习提问

(1)向量在直角坐标系中坐标的定义是什么?

(2)若o为原点,则点A的坐标与向量的坐标之间的关系是什么?

(3)如果两个向量相等,那么这两个向量的坐标需满足什么条件?

课堂教学论认为:“要使教学过程最优化,首先要把所学习的知识和学生已有的信息联系起来”。通过这三个问题的复习就可以使学生在学习新的知识前,获得适当的知识积累。

(二)导入新课

在教学过程中,我提出两个问题:

问题1 已知a=a1e1+a2e2,b=b1e1+b2e2,(e1、e2为直角坐标系的基底)

1、则a,b的坐标为……。

2、求a+b,a—b,λa。

3、求a+b,a—b,λa的坐标。

问题2已知A=(x1,y1),B=(x2,y2)。

1、则,的坐标分别为……。

2、化简。

3、求的坐标。

这两个问题由师生共同练习完成。

通过师生间的相互讨论、相互启发、相互合作,达到温故知新的目的,也由低级到高级的认知顺序引出本节课的知识点,这很自然,学生比较容易接受,容易激发学生发现向量直角坐标运算规律的强烈欲望。

(三)创设问题

这是本节课的核心。根据循序渐进、由浅入深的教学原则,我设计了三个层次的问题。

第一层次:先由师生共同归纳总结由问题1、2得出的结论,培养学生观察、分析、比较、归纳的能力。

由问题1我们得到结论1:

a+b=(a1+b1,a2+b2),

a—b=(a1—b1,a2—b2),

λa=(λa1,λa2)。

用语言叙述为:

两个向量的和与差的坐标分别等于两个向量相应坐标的和与差。

数乘向量的坐标等于数乘向量相应坐标的积。

由问题2我们得到结论2:

=(x2—x1,y2—y1)。

用语言叙述为:

一个向量的坐标等于向量终点的坐标减去始点的相应坐标。

这两个结论是向量直角坐标运算的规律,为本节的知识点。为加深认识,我又安排了练习1。

练习1(口答)下列说法是否正确:

(1)已知向量a=(—2,4),b=(5,2),

则:①2a=(—4,4),2b=(5,4)。②2a=(—4,8)。

(2)已知A(2,1),B(3,8),则=(—1,—7)。

①让学生注意数乘向量的坐标等于数乘向量相应坐标的积。

②提醒学生区分点的坐标和向量坐标,两者是不同的概念。

上述(2)小题让学生明确一个向量的坐标等于向量终点坐标减去始点的相应坐标,而不等于始点坐标减去终点的相应坐标。

第二层次:设计练习2、3、4。

练习2 已知如下向量a、b,求a+b,a—b,3a+4b,4a—4b的坐标。

(1)a=(—2,4),b=(5,2);

(2)a=(4,3),b=(—3,8)。

练习3 已知A(2,1),B(3,8),求。

练习4 已知(2,3),B(4,5),c(6,8)。

(1)若3=,求D点的坐标。

(2)求2—3+2。

这组练习由学生独立完成。目的是使学生进一步掌握向量的直角坐标运算和向量相等的条件,也体会到对于两个向量相加减的直角坐标运算法则可以推广到有限个向量相加减。对于练习4中的(2)让学生认识到先进行向量线性运算几何形式的化简,再进行代数运算比较好,也感受到几何与代数密不可分。

第三层次:遵循深入浅出的教学原则,我安排了例题1和练习5,这是本节课重点知识的应用。

例题1 已知平行四边形ABcD的三个顶点A、B、c的坐标分别是A(—2,1),B(—1,3),c(3,4),求顶点D的坐标。

例题1有多种解法,除了课本中给出的由向量线性运算的几何形式向代数形式转化的方法,还可以利用向量=或=列方程求解,也可以利用线段Ac、BD的中点E的向量表达式进行等量转化以求出D点的坐标。但不论哪一种解法都用到了一个很重要的数学方法──数形结合。

讲这个题时,我板书采用的是课本给出的方法,目的是引导学生熟练地转化向量线性运算的几何形式和代数形式,其他的方法则只是给予提示,给学生留出空间,开阔思路,培养学生的发散思维能力。

通过例题1让学生深刻理解向量的直角坐标运算,亲身体会“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事非”(华罗庚语)。从而提高学生利用数形结合的方法解决实际问题的能力。

练习5已知A(—2,1),B(1,3),求线段AB中点m和三等分点P、Q的坐标。

练习5是例题1的进一步深入,学生以小组讨论的形式,采用多种方法解题,教师以巡视的方式进行个别引导,并让有不同解法的学生上黑板演示,让学生动手实践、自主探索、合作交流,围绕中心各抒己见,把思路方法弄清。

通过这个练习,学生可以更熟练地掌握向量直角坐标运算的应用,并使集体智慧个人化,书本知识灵活化,同时培养学生独立思考的能力和团结协作的精神。

(四)小结

为了让学生将获得的知识进一步条理化、系统化,同时培养学生归纳总结的能力及练习后进行再认识的能力,引导学生对本节课进行总结:

向量的直角坐标运算使向量运算完全数量化,将数与形紧密地结合起来,这样很多的几何问题就可以通过“数形结合”的方法转化为大家熟悉的数量的运算。

(五)布置作业

为了让学生进一步巩固本节课内容,提高自觉学习的能力,我布置作业如下:

1、课本第186页:练习A1(1)、2(1);练习B 1、2。

2、思考题:3a与a的坐标有什么关系?位置有什么特点?

A组的题用来巩固向量的直角坐标运算,B组的题则让学生进一步掌握向量直角坐标运算的应用,思考题又为下一节课的内容埋下伏笔。

(六)板书设计

在黑板中上方书写完课题后,将版面分为四部分,从上而下,自左向右,按授课顺序书写授课内容,达到清晰、条理、有序的目的。板书内容如下:

课题:6、2、2 向量的直角坐标运算

问题1练习1 例1 练习5

结论1练习2

问题2练习3

结论2练习4

本节的说课内容到此结束,谢谢大家。

初中数学说课稿【第二篇】

各位专家、各位老师:

大家好!

今天我说课的内容是人教版七年级数学下册第六章《因式分解》第一节课的内容·

一、说教材

(一)教材的地位与作用

因式分解是代数式的一种重要恒等变形·它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用,就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系·它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理·这一思想实质贯穿后继学习的各种因式分解方法·通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备·因此,它起到了承上启下的作用·

(二)教学目标

根据新课程标准以及因式分解这一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:

1·知识目标:

理解因式分解的概念;掌握从整式乘法得出因式分解的方法·

2·能力目标:

培养分工协作及合作能力,锻炼学生的语言表达及用数学语言的能力;培养学生观察、分析、归纳的能力,并向学生渗透对比、类比的数学思想方法·

3·情感目标:

培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯;体会事物之间互相转化的辨证思想,从而初步接受对立统一观点·

(三)教学重点与难点·

本节课理解因式分解的概念的本质属性是学习整章因式分解的关键,而学生由乘法到因式分解的变形是一个逆向思维·在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成·因此我将本课的学习重点、难点确定为:

教学的重点:因式分解的概念

教学的难点:认识因式分解与整式乘法的关系,并能意识到可以运用整式乘法的一系列法则来解决因式分解的各种问题·

二、说学情

1·学生已经学习整式的乘法、乘法公式以及整式的除法的学习·

2·八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习·

三、说教法学法

教发与学法是互相和统一的,正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流 ”·就本节课而言,在教法上不妨利用对比教学,让学生体验因式分解概念产生的过程;利用类比教法、讲练结合的教学方法,以概念的形成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈·不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感、创造和谐的课堂氛围,这是最重要的·

四、教学过程·

本节课教学过程分以下六个环节:

创设情景,引出新知; 观察分析,探究新知;

师生互动,运用新知; 强化训练,掌握新知;

整理知识,形成结构; 布置作业,巩固提高·

具体过程设计如下:

第一环节:创设情景,引出新知

我先出示几个整式乘法的练习,让学生做·教师巡视·

学生完成习,一是复习整式的乘法,激活学生原有整式乘法的认知结构,满足“温故而知新”的后,教师引导:把上述等式逆过来看一看还成立吗?

安排这样的练教学原理·二是为本节课目标的达成作好铺垫·在此基础上引出课题——因式分解·

第二环节:观察分析,探究新知

全班两个组,比赛看哪一组算的快,当a=101,b=99时,第一组求a2—b2的值,第二组求(a+b)(a—b)·教师巡视,代表性地抽取两名学生板演,给出两种解法·

安排这一过程是想利用对比分析,让学生体会,把a2—b2化为整式积的形式,会给计算带来简便,顺应了因式分解概念的引出·

问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮,是学生知识及能力获得发展的有效动力·故在教因式分解概念时,我设计以下两个问题:

(1) 你能尝试把a2—b2化成几个整式的积的形式吗?并与小学所学的因数分解作比较·

(2) 因式分解与整式乘法有什么关系?

让学生分四人小组讨论·归纳因式分解的定义·

一个多项式→几个整式+积→因式分解

我特设三个例题,这几个题目完全放手让学生自主进行,充分暴露学生的思维过程,使学生真正成为学习的主体·通过例1、例2罗列一些似是而非、容易产生错误的对象让学生辨析,让学生进一步体会整式乘法与因式分解的互逆关系·促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构·通过例3体会用分解因式解决相关问题的简捷性·

第三环节:强化训练,掌握新知

数学家华罗庚先生说过:“学数学而不练,犹如入宝山而空返”·适当的巩固性,应用性练习是学习新知识,掌握新知识所必不可少的·为了促进学生对新知识的理解和掌握,我及时安排学生完成两个练习·通过这两个练习让学生学会辨析因式分解这种变形·使学生进一步理解和掌握因式分解,为下一节提取公因式法进行因式分解打基础;同时又训练、培养和发展学生的基本技能和能力·

第四环节:整理知识,形成结构·

最后我设计了一个表格的形式进行归纳小结·使学生对知识的掌握上升为一种能力,并纳入已有的认知结构,同时也培养了学生的概括提炼能力·

第五环节:布置作业,巩固提高·

在作业上我布置了看书、作业本、思考题·这样既有利于学生巩固所学内容,又让不同层次的学生得到相应的发展·

五、说板书

在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆·

初中数学说课稿【第三篇】

一、 说教材

《平移与旋转》是人教版实验教科书小学数学第四册P41-42页的教学内容,这部分内容是在学生会辨认锐角、钝角,建立了有关几何图形概念的基础上进行教学的,为今后的几何学习打下基础。图形的平移和旋转在学生的生活中并不陌生,而作为新课程新的教学内容则是学生第一次接触。因此教材从生活实例入手,在大量感知的基础上,让学生体会和发现平移与旋转的运动规律,并通过动手操作进一步理解和掌握平移的方法以及学会分辨平移和旋转。

教学目标:

知识与技能目标:

1、使学生结合实例,初步感知平移、旋转现象。

2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

情感态度与价值观目标:能积极参与对旋转与平移现象的探究活动,感受数学与现实生活的密切联系,对身边与旋转和平移有关的某些事物产生好奇心。

过程与方法目标:

初步渗透了变换的数学思想方法

教学重点是感知平移、旋转现象;学会在方格纸上平移图形

教学难点是在方格纸上平移图形

二、 说教法与学法

1、实践操作法

二年级的学生还处于形象思维阶段,建构主义学也认为,小学生学习数学是一个主动建构知识的过程,学生学习数学的过程不是被动地吸收课本上的现成结论,而是一个亲自参与的充满丰富而生动的思维活动。因此,本节课设计了让学生看一看、说一说、剪一剪等一系列的操作活动,运用多感官参与学习,解决了数学知识的抽象性与小学生思维多依赖直观这样一个矛盾,促进学生思维的不断发展。

2、游戏教学法

《数学课程标准》要求让学生在生动具体的情境中学习数学,因此,本教学设计注重创设图片情境,以激趣为基点,激发学生强烈的求知欲望,巩固所学新知识。教育心理学中也说游戏是儿童的本性,结合本课教学内容抽象性的特点,我以图片和游戏作为载体由浅入深地引入平移和旋转的概念。

学法

1、情境学习法

《数学课程标准》要求教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决数学在现实生活中的问题,体会学习数学的重要性。因此,我让学生从身边事例中找出平移、旋转的物体,培养学生在实际生活中学数学用数学的兴趣。

2、小组合作法

通过合作交流培养学生能数学地进行交流,形成良好的数学素养,使学生从自己的经验出发,在合作中探索、发现和发展,使学生从被动服从向主动参与转化,从而形成师生平等、协作的课堂气氛,使教师真正成为教学活动的组织者、引导者、合作者。

三、 说教学过程

依据以上的教法学法,本课设计了如下四个教学环节:

1、 实物导入,初步感知

新课标认为学生经验是发展空间观念的基础。学生的空间知识来自丰富的现实原型,与现实生活关系非常紧密,这是他们理解和发展空间观念的宝贵资源。而且儿童的注意力有强烈的直观性和色彩性的特点,容易被生动有趣的事物所吸引,所以在开始的时候我就利用窗户和钟表揭示平移和旋转的现象。

课伊始,我就引导学生观察窗户上窗的移动情况,让学生用自己的语言描述窗户的运动情况并让学生用手画出窗户的移动路线,形成对平移概念初步的感知。接着,我再出示钟表,让学生观察秒针的运动情况的同时让学生用手画出秒针的运动路线,形成对旋转概念的初步感知。

2、 创设情境,感受体验

在学生形成初步感知后,我再创设图片情境加深理解解(利用主题图及课本中的图片揭示平移、旋转现象)

当今的建构主义者主张,世界是客观存在的,但是对于世界的理解和赋予意义却是由每个人自己决定的。我们是以自己的经验为基础来建构知识的,所以他们更关注如何以原有的经验、心理结构和信念为基础来建构知识,他们强调学习的主动性、社会性和情境性。因此,我利用学生生活中的例子创设有关平移和旋转现象的情境。

我用幻灯机展示本单元的主题图,吸引学生的注意力,将学生带入游乐园的情境中,然后就问学生:游乐园里各种游乐项目的运动变化相同吗?(不同)你能根据他们不同的运动变化分分类吗?

为了使学生进一步区别平移与旋转,我将为同学们提供的生活素材依次出现在屏幕上,然后让学生自己进行区分,在比较中体会平移和旋转的不同特点。

当学生能看图区分出平移和旋转以后,我就让学生发挥想象说出身边有关平移和旋转的例子,让学生学以致用。

3、 游戏探究,巩固新知

著名心理学家皮亚杰说:“儿童的思维是从动作开始的,切断动作与思维的联系,思维就得不到发展。”而且,二年级的学生的思维还处于形象阶段,只有借助多感官的参与学习才能更好的巩固所学内容。同时,在这一环节教学后进行的是本课的重难点教学,经过了前三环节的教学,许多学生已经感觉疲惫,不免注意力有所下降。在这一环节的教学中,我让学生自己动手创作平移和旋转的手工,生动有趣的活动能再次将学生的注意力吸引过来,不仅加深对所学内容的理解,而且使学生在课堂后半段时间学习更加有效。

首先,我先和学生做一个游戏,我先点名叫一个学生做示范,让他听我口令运动。例如:我说:“某某同学向右平移两个座位,然后旋转一圈,再向左平移两个座位。”当我做完示范以后可以叫一排同学听命令,然后再全班同学一起做,这样由点到面的练习,不仅能更好地控制课堂,也可以使学生用身体来加深体会。

接着,我让学生进行有关平移与旋转的手工制作大比拼。

4、 情境练习,启智培能

在这一环节的练习中,我创设小鱼找妈妈的情境,激发学生的童心,使学生积极主动的投入到在方格纸上平移物体这一重难点上。

我出示方格纸后说:“哟,这条小鱼正着急地找它的妈妈呢。它们该怎样游,向什么方向游多少格才能碰面呢?要嘴对嘴才算碰面哦。请你们两人一组帮它们设计路线,并把路线记录下来。”

让学生感受到了在方格纸上移动物体的乐趣后,我继续激发学生的求知欲,我再创设房子会搬家的情境,让学生都参与数一数的练习。

在最后的时候让学生自己总结本课所学的内容,改变过去由老师总结的教学方法,让学生将所学的知识及时内化,成为自己的知识。

四、 板书设计

本课运用了直观比较的形式设计板书,简单直观的设计有利于学生进行比较和记忆,帮助学生了解知识的整体结构,掌握所学内容间的联系和区别。

平移与旋转

平移 找点→连点→移点

旋转

整节课的教学设计以学生为主体,在教学中紧密结合教材内容,遵循学生的认知规律和心理特征,有意识的进行发展学生思维能力的训练,让每一位学生都能体会到学习的乐趣。

初中数学说课稿【第四篇】

一、教学目标

1. 知识与技能目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2. 过程与方法目标:激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

3. 情感态度与价值观目标:渗透转化的数学思想和极限思想。

二、教学重点

正确计算圆的面积

三、教学难点

圆面积公式的推导

四、教具准备

多媒体课件,圆片

五、教学设计

(一)复习旧知,导入新课

1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)

2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

4. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

(二)动手操作,探索新知

1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的`面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示)

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式)

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2. 推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。教师评价。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr []× r

S=πr2

师小结公式 S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3. 利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(三)运用新知,解决问题

1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

2. 测量一个圆形实物的直径,计算它的周长及面积。

3. 课件演示: 用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

(四)全课小结

这节课你自己运用了什么方法,学到了哪些知识?师生共同回顾。

(五)布置作业

1. 第97页的第3题和第4题。

2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物 直径(厘米) 半径(厘米) 面积(平方厘米)

六、板书设计:

圆的面积

长方形的面积=长×宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

相关推荐

热门文档

20 487897