《圆的周长》数学教案(精编4篇)
【序言】由阿拉题库最美丽的网友为您整理分享的“《圆的周长》数学教案(精编4篇)”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
圆的周长教学设计1
教学目的
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、了解圆周率的数学史话,接受爱国主义教育和培养严谨的科学精神。
教学重点、难点
推导圆周长计算公式,理解圆周率的意义。
教具准备
圆片、铁圈、绳子、直尺。
教学过程
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:小明和小强进行赛跑比赛,(如图)小明绕着长方形地跑,小强绕着圆形跑。小明跑的路程是什么?小强呢? 同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为小明和小强谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能) 指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
反思教育心理学家奥苏伯尔说过:“影响学生的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并据此进行教学。”我们应遵循实际,在把学生已有的知识作为教学的起点。注意不断地把学生的认识组织在矛盾运动中,使教学过程成为“不断地揭示和呈现矛盾→引导学生分析矛盾和研究矛盾→解决矛盾”的过程。测量圆的周长,教师让学生经历了“剪开拉直”→“先绕后量”→“滚动测量”→“寻找计算方法”的过程。教师和学生一起不断地产生认知冲突,不断地平息冲突,又不断地产生冲突,最终产生寻找圆周长计算的一般方法。学生在这种“冲突→平衡→再冲突→再平衡”的周而复始的矛盾运动中,理解了知识,激发求知的欲望和热情。
二、经历探究全程,验证猜想发现。
㈠圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
㈡圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,多媒体课件显示:圆的周长总是直径的3倍多一些)
反思合理猜想──有效探究的前提。猜想是人们依据事实、凭借直觉所做出的推测,是一种创造性的思维活动。纵观数学发展历史,很多著名的数学结论都是从猜想开始的。伟大的数学家高斯指出:“若无某种大胆放肆地猜想,一般是不可能有知识的进展的。”数学方法理论的倡导者波亚利对数学猜想有过这样的描述:“在数学的领域中,猜想是合理的、值得尊重的、是负责任的态度。”他认为,在有些情况下,教猜想比教证明更为重要。所以,教会学生学会数学猜想就显得尤其重要。本节课,教者引导学生进行了两次合理猜想。一是猜想圆的周长与直径有关,是通过直觉观察引发的。二是猜想圆的周长与直径有倍数关系,是根据正方形的周长与边长的关系而类比产生的。教者引导学生通过对图形的分析,挖掘有价值的问题:圆的周长一定是直径的2-4倍。合理的猜想科学地定位了探究的思路,提高了课堂的实效。学生在猜想过程中,新旧知识的碰撞,激发智慧的火花,思维有了很大的跳跃,提高了数感,发展了推理能力,锻炼数学思维。小心验证──科学归纳的保证。美妙的猜想,只有经过科学的验证,才能彰显智慧的光环。为了提高探究的效率,验证时往往要融入讨论、实验、计算、观察、归纳和概括于一体,教者应留给学生足够的时空,充分解放学生的脑、手、眼、口等多种感官参与探究过程。要在鼓励学生发表独特见解的基础上,善于找到结论的相似之处进行归纳。小心验证,还要讲求实事求是。尊重学生研究的结果,要正确处理好研究结果与科学的结论之间的差距,不能简单地否定学生研究的结果,挫伤学生的积极性。本节课探究圆的周长与直径的倍数关系,学生运用“化曲为直”的方法测量圆的周长,算出周长与直径的比值。由于测量的误差,学生只能计算出圆的周长是直径的3倍多一些。教者遵循实际,肯定学生验证的真实性。课堂上教师实事求是的科学态度,会进一步激发学生探究的热情,同时这种科学态度对学生终身的影响也是不可估量的。
三、感受数学文化,激发情感体验。
1、、介绍刘徽的“割圆术”。课件演示把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。
2、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在和之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
3、介绍计算机计算圆周率的情况。
4、教学圆周率:π≈。
反思数学文化的内涵不仅表现在知识本身,还寓于它的历史。著名数学家霍格本曾经说过:“数学史实际上是与人类的各种发明与发现、人类经济结构的演变、以及人类的信仰相互交织在一起的”,确实打开数学发展史,见到的是人类文明进步的历史,完全有理由、也有必要让学生更多地去了解,使得数学的学习成为名副其实的文化传播。本节课向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。通过介绍刘徽和祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时通过史话的介绍,让学生觉得圆周率发现的不易,帮助他们从小培养严谨的科学精神。
四、刷新应用能力,总结巩固新知。
1、请你用自已的话总结一下怎样计算圆的周长?用字母怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?
2、尝试练习:一辆自行车车轮的直径是米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)
3、明辨是非:
(1)圆的周长和直径的比的比值叫做圆周率。( )
(2)大圆的圆周率大于小圆的圆周率。( )
(3)π的值等于。( )
(4)半径是10厘米的圆,它的周长是厘米。( )
4、抢答:求下面各圆的周长: d=2厘米,d=3厘米,d=4厘米,d=5厘米, d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。 5、课堂作业:练习二十五2-5题。
反思荷兰数学教育家弗赖登塔尔反复强调:“学习数学的唯一正确方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生”。“如果学习者不进行再创造,他对学习的内容就难以真正的理解,更谈不上灵活应用了”。我们不但要在学生学习新知识的过程中去引导和帮助学生进行这种“再创造”,而且在组织练习时应不断设置思维障碍,不断引起学生的认知冲突,在学生力所能及的范围内,让学生跳起来摘果子,去进行这种“再创造”,并在“再创造”的过程中体验成功的喜悦。本节课教师在练习运用阶段,通过让学生抢答,引导学生记住×1、×2、……×9这些算式的乘积。这看似有点死记硬背,但实践证明:对这些运算结果的适当记忆,可以减轻学生的计算负担,为学生的后续学习打下坚实的基础。
以上内容就是一米范文范文为您提供的4篇《《圆的周长》数学教案》,能够帮助到您,是一米范文范文最开心的事情。
教材分析:2
圆的周长是在学生学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步来学习的。从生活实际入手,利用学生掌握的有关圆的知识,通过实验得出结论。
圆的周长优秀说课稿3
今天我说的课题是圆的周长。这是《实验数学》第十一册第四单元中一个课时的内容。下面,我来谈谈如何教学这一课。
一、理解本课内容在教材中的地位和作用
学生以前已经学过直线图形,上节课又学习了“圆的认识”,这些知识为本课教学打下了扎实的基础。教材通过一系列操作活动,让学生在观察、分析、归纳中理解圆的周长的含义。通过圆周率的形成过程,推导圆周长的计算方法。从而为下节课学习利用圆的周长公式,反求圆的直径或半径,作好了理论上的准备。
二、把握本课教学的重点、难点和关键
本课教学的重点是理解和掌握圆周率的意义及圆的周长计算公式。难点是理解圆周率的意义和圆的周长公式的推导。关键是理解圆周率的意义。
三、确立本课教学要达到的目标
本课教学要达到的目标包括以下三个方面。
1、知识目标:使学生理解圆周率及圆的周长的含义,掌握圆周率Л的近似值,掌握圆周长的计算方法。
2、能力目标:通过对圆周长的测量圆周率的探索圆周长计算公式的推导等活动,培养学生的观察、分析、抽象、概括等能力。通过2道例题的学习,培养学生运用理论解决实际问题的能力。
3、情感目标:向学生介绍我国古代数学家祖冲之在当时低劣的条件下,准确计算出圆周率的伟大成就,激发学生的民族自豪感。
四、准备本课的教具和学具
教师准备一根一米长的直尺,一根6米长的皮尺,几个大小不同的用硬纸板剪成的圆,一个用硬纸板剪成的长方形。学生每人准备一把小直尺,一根包装带,几个大小不同的硬纸板剪成的圆(瓶盖、算珠等圆形物体更好)。
五、采用实践感悟、协同探索、抽象概括等教法与学法,让学生享受成功
1、实践感悟。
上课开始时,教师拿出长方形硬纸板,让学生通过口述,手摸重新认识一次长方形的周长。再拿出圆形硬纸板借助长方形周长的引渡,让学生用皮尺围测、用圆在皮尺上滚测、用手在圆周上滑摸等方式认识并理解圆的周长。
2、协同探索。
当学生对圆的周长有了初步认识后,教师随即把学生以6人一个小组分开围座在一起,然后让他们分别量出大小不同的圆的周长和直径,并由小组长记录下每个圆的周长和直径的长度数据,再分别计算出每个圆的周长除以直径的商(保留两位小数),最后比较所有的商,看看有何特点。
教师要求各小组汇报每个圆的周长除以直径所得的商,并逐一把这些商写在黑板上。然后引导学生抽象出一个结论:不论多大的圆,它的周长总是直径的3倍多一点。
就此机会,教师向学生计述一千多年以前,我国数学家祖冲之就用算筹计算出每个圆的周长除以它的直径的商总在——之间。这个伟大的发现,比欧州人早了500年。
教师指出:由于圆的周长除以它的直径所得的商是一个固定的数,我们就把这个数叫做圆周率,并用字母Л(pai)表示,Л是一个无限不循环小数。在计算时,一般取近似值,即Л=。
3、抽象概括
既然知道圆的周长divide;圆的直径=圆周率,那么,根据被除数、除数与商的关系,已知直径求周长应是:圆的周长=圆的直径×圆周率,为了方便,我们用字母C表示圆的周长,用字母d表示圆的直径,圆的周长计算公式为:C=Лd。因为圆的直径是半径的2倍,即d=2r,那么圆的周长=2×圆的半径×圆周率,用字母表示就是C=2Лr。这样,我们就得到了根据圆的直径求圆的周长和根据圆的半径求圆的周长的两个公式:C=Лd和C=2Лr。
4、享受成功
通过前面的学习,学生对圆的周长和圆周率有了比较清醒地认识,对圆的周长的计算公式也有了理论上的把握。但是,我们学习知识的目的是运用知识。如何运用我们本课所学的知识呢?教师要求学生自己学习课本第101页例1,并要求学完后自己试做第103页试做题第1题。估计大部分学生做完后,教师又从平时成绩好、中、差三类学生中各抽出一名板演。板演完成后集体评论。我们一方面表扬和鼓励做得正确的学生,另一方面纠正板演中出现的错误。
就在学生初步感受成功的快乐时,教师再次要求学生自学例2,并用解决试做题第1题的同样方法,解决试做题第2题。
最后,教师根据板书,引导学生对本课内容作一次系统的口头归纳。
数学《圆的周长》优秀教学设计4
教材内容:
人教版第十一册第89-91页例1及做一做中的题目,练习二十三的第1-6题。
教学目标:
⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。
⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。
⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。
教学重点、难点
教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率的认识。
教学过程设计
一、创设情境,引发探究
⒈几何画板《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。
⒉揭示课题
⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?
⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?
板书课题:圆的周长
二、人人参与,探究新知
(一)教具演示,直观感知,认识圆周长。
教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?
(二)理解圆周率的意义
活动一:测量圆的周长
⒈教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。
然后各组分工同桌合作,量出圆片的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。
⒉用几何画板《小球的轨迹》演示形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?
⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
活动二:探究圆周长与直径的关系,认识圆周率。
⒈圆的周长与什么有关。
⑴启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?
⑵利用不同长度的小球形成的三个圆,让学生观察思考考:。哪一个圆的周长长?圆的周长与它的什么有关呢?
得出结论:圆的周长与它的直径有关。
⒉圆的周长与直径有什么关系。
⑴学生动手测量,验证猜想。
学生分组实验,并记下它们的周长、直径,填入书中的表格里。
⑵观察数据,对比发现。
提问:观察一下,你发现了什么呢?
(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
⑶出示几何画板《周长与直径的关系》演示。
⑷比较数据,揭示关系。
正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),是不 是所有的圆周长与直径都是3倍多一些呢?教师演示几何画板最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。
⒊认识圆周率
⑴揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母表示。板书:圆周率
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长直径=
⑵介绍的读写法
⑶指导阅读,了解中国人引以为自豪的历史。
提问:你知道了什么?
(三)推导圆的周长计算公式。
⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=d
请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?
⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2r。
提问:几何画板上的小球轨迹形成的圆你会求周长吗?
学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?
三、应用新知,解决问题
1、和自己的伙伴一起解答例1和做一做
2、说出这两题用哪个公式比较好?
四、实践应用,拓展创新。
⒈基础性练习:
(1)求下列各圆的周长(几何画板)
r=3厘米 d=4厘米
(2)、我们现在有办法求唐老鸭跑的路程吗?
⒉、判断
①圆的周长是直径的倍。( )
②大圆的圆周率小于小圆圆周率。( )
3、提高练习
在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?
五、总结评价,体验成功
1、你学到了什么? 2、你是怎么学到的?