关于高一数学的教案3篇
【导言】此例“关于高一数学的教案3篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
高一数学的教案1
一、内容及其解析
(一)内容:指数函数的性质的应用。
(二)解析:通过进一步巩固指数函数的图象和性质,掌握由指数函数和其他简单函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。
二、目标及其解析
(一)教学目标
指数函数的图象及其性质的应用;
(二)解析
通过进一步掌握指数函数的图象和性质,能够构建指数函数的模型来解决实际问题;体会指数函数在实际生活中的重要作用,感受数学建模在解题中的作用,提高学生分析问题与解决问题的能力。
三、问题诊断分析
解决实际问题本来就是学生的一个难点,并且学生对函数模型也不熟悉,所以在构建函数模型解决实际问题是学生的一个难点,解决的方法就是在实例中让学生加强理解,通过实例让学生感受到如何选择适当的函数模型。
四、教学过程设计
探究点一:平移指数函数的图像
例1:画出函数 的图像,并根据图像指出它的单调区间。
解析:由函数的解析式可得:
其图像分成两部分,一部分是将 (x-1)的图像作出,而它的图像可以看作 的图像沿x轴的负方向平移一个单位而得到的,另一部分是将 的图像作出,而它的图像可以看作将 的图像沿x轴的负方向平移一个单位而得到的。
解:图像由老师们自己画出
变式训练一:已知函数
(1)作出其图像;
(2)由图像指出其单调区间;
解:(1) 的图像如下图:
(2)函数的增区间是(-,-2],减区间是[-2,+).
探究点二:复合函数的性质
例2:已知函数
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。
解:(1)要使函数有意义,须 -1 ,即x 1,所以,定义域为(- ,0) (0,+ ).
(2)变式训练二:已知函数 ,试判断函数的奇偶性;
简析:∵定义域为 ,且 是奇函数;
探究点三 应用问题
例3某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的质量是原来的
84%.写出这种物质的剩留量关于时间的函数关系式。
解
设该物质的质量是1,经过 年后剩留量是 .
经过1年,剩留量
变式:储蓄按复利计算利息,若本金为 元,每期利率为 ,设存期是 ,本利和(本金加上利息)为 元。
(1)写出本利和 随存期 变化的函数关系式;
(2)如果存入本金1000元,每期利率为%,试计算5期后的本利和。
分析:复利要把本利和作为本金来计算下一年的利息。
解
(1)已知本金为 元,利率为 则:
1期后的本利和为
2期后的本利和为
期后的本利和为
(2)将 代入上式得
六。小结
通过本节课的学习,本节课应用了指数函数的性质来解决了什么问题?如何构建指数函数模型,解决生活中的实际问题?
高一数学的教案2
概念反思:
变式:关于 的不等式 在 上恒成立,则实数 的范围为__ ____
变式:设 ,则函数( 的最小值是 .
课后拓展:
1.下列说法正确的有 (填序号)
①若 ,当 时, ,则 在I上是增函数。
②函数 在R上是增函数。
③函数 在定义域上是增函数。
④ 的单调区间是 .
2.若函数 的零点 , ,则所有满足条件的 的和为?
3. 已知函数 ( 为实常数).
(1)若 ,求 的单调区间;
(2)若 ,设 在区间 的最小值为 ,求 的表达式;
(3)设 ,若函数 在区间 上是增函数,求实数 的取值范围.
解析:(1) 2分
∴ 的单调增区间为( ),(- ,0), 的单调减区间为(- ),( )
(2)由于 ,当 ∈[1,2]时,
10 即
20 即
30 即 时
综上可得
(3) 在区间[1,2]上任取 、 ,且
则
(*)
∵ ∴
∴(*)可转化为 对任意 、
即
10 当
20 由 得 解得
30 得 所以实数 的取值范围是
高一数学教案全集53
数学教案-圆的周长、弧长
圆周长、弧长(一)
教学目标 :
1、初步掌握圆周长、弧长公式;
2、通过弧长公式的推导,培养学生探究新问题的能力;
3、调动学生的积极性,培养学生的钻研精神;
4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力。
教学重点:弧长公式。
教学难点 :正确理解弧长公式。
教学活动设计:
(一)复习(圆周长)
已知⊙O半径为R,⊙O的周长C是多少?
C=2πR
这里π=…,这个无限不循环的小数叫做圆周率。
由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?
提出新问题:已知⊙O半径为R,求n°圆心角所对弧长。
(二)探究新问题、归纳结论
教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).
研究步骤:
(1)圆周长C=2πR;
(2)1°圆心角所对弧长=;
(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;
(4)n°圆心角所对弧长=.
归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则
(弧长公式)
(三)理解公式、区分概念
教师引导学生理解:
(1)在应用弧长公式 进行计算时,要注意公式中n的意义。n表示1°圆心角的倍数,它是不带单位的;
(2)公式可以理解记忆(即按照上面推导过程记忆);
(3)区分弧、弧的度数、弧长三概念。度数相等的弧,弧长不一定相等,弧长相等的。弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧。
(四)初步应用
例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).
分析:(1)圆环的宽度与同心圆半径有什么关系?
(2)已知周长怎样求半径?
(学生独立完成)
解:设外圆的半径为R1,内圆的半径为R2,则
d= .
∵ , ,
∴ (cm)
例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)
教师引导学生把实际问题抽象成数学问题,渗透数学建模思想。
解:由弧长公式,得
(mm)
所要求的展直长度
L (mm)
答:管道的展直长度为2970mm.
课堂练习:P176练习1、4题。
(五)总结
知识:圆周长、弧长公式;圆周率概念;
能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题。
(六)作业 教材P176练习2、3;P186习题3.