首页 > 学习资料 > 高中教案 >

高二物理教案【精编4篇】

网友发表时间 1440036

【前言导读】此篇优秀教案“高二物理教案【精编4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

高二物理人教版教案【第一篇】

一、教学目标

1.知道波源的频率与观察者接收到的频率的区别。

2.知道什么是多普勒效应,知道它是在波源与观察者之间有相对运动时产生的现象。

3.了解多普勒效应的一些应用。

二、重点难点

重点:多普勒效应及产生的原因。

难点:对多普勒效应的解释。

三、教学过程:

我们在前面的讨论中,波源和观察者都是相对介质静止的,波源的频率和观察者感觉到的频率是相同的,若波源或观察者或它们两者均相对介质运动,则视察者感觉到的频率f和波源的真实频率f一般并不相同,这种现象称为多普勒效应。火车入站,笛声较高,火车出站,笛声较低,就是这种现象。

(一)多普勒效应

演示制作的课件:听行驶中火车的汽笛声

1.现象:当火车向你驶来时,感觉音调变高;当火车离你远去时,感觉音调变低(音调由频率决定,频率高音调高;频率低音调低).

2.多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。

3.多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接收到的频率,即单位时间接收到的完全波的个数决定的。

演示制作的课件:波源和观察者间的相对运动跟观察者间接收到的频率关系。

(1)当波源和观察者相对介质都静止不动。即二者没有相对运动时:

单位时间内波源发出几个完全波,观察者在单位时间内就接收到几个完全波。观察者接收到的频率等于波源的频率。

(2)当波源和观察者有相对运动时,观察者接收到的频率会改变。

①波源相对介质不动,观察者朝波源运动时(或观察者不动,波源朝观察者运动时)观察者在单位时间内接收到的完全波的个数增多,即接收到的频率增大。

②波源相对介质不动,观察者远离波源运动时(或观察者不动,波源远离观察者运动时)观察者在单位时间内接收到的完全波的个数减少,即接收到的频率减小。

总之:当波源与观察者有相对运动时,如果二者相互接近,观察者接收到的频率增大;如果二者远离,观察者接收到的频率减小。

注意在多普勒效应中,波源的频率是不改变的,只是由于波源和观察者之间有相对运动,观察者感到频率发生了变化。

4.多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。

(二)多普勒效应的应用

1.根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。

2.红移现象:在20世纪初,科学家们发现许多星系的谱线有"红移现象",所谓"红移现象",就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。科学家从红移的大小还可以算出这种远离运动的速度。这种现象,是证明宇宙在膨胀的一个有力证据。

小结多普勒效应是指由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象,它是奥地利物理学家多普勒在1842年发现的。

作业课本P25习题A组1~3

四、课堂跟踪反馈

1.关于多普勒效应,下列说法正确的是( )

A.多普勒效应是由于波的干涉引起的

B.多普勒效应说明波源的频率发生改变

C.多普勒效应是由于波源与观察者之间有相对运动而产生的

D.只有声波可以产生多普勒效应

2.当火车进站鸣笛时,我们在车站听到的声调( )

A.变低

B.不变

C.变高

D.不知声速和火车车速,不能判断

3.由于波源和观察者之间有,使观察者感到频率发生变化的现象,叫做多普勒效应。

4.当波源与观察者有相对运动时,如果两者相互接近,观察者接收到的频率将_______波源频率;如果两者远离,观察者接收到的频率将_____被源频率(填"大于""等于"或"小于")

参考答案

3.相对运动 4大于 小于

高二物理教案电子版【第二篇】

教学目标

知识与技能

1.通过实验探究电流、电压和电阻的关系;

2.会同时使用电压表和电流表测量一段导体两端的电压和其中的电流;

3.会使用滑动变阻器来改变一段导体两端的电压。

过程与方法

领悟用“控制变量法”来研究物理问题的科学方法。

情感态度与价值观

1.在解决问题的过程中,有克服困难的信心和决心,能体验战胜困难、解决物理问题时的喜悦;

2.养成实事求是、尊重自然规律的科学态度。

教学重点、难点

重点:实验探究电流、电压和电阻的关系的过程

难点:运用数学一次函数图象分析出电流、电压和电阻的关系式

教学用具

教师方面:电流表、电压表、学生电源(或三节干电池)、滑动变阻器、定值电阻(R 1=5Ω和R 2=10Ω)、开关、导线。

学生方面:电流表、电压表、三节干电池、滑动变阻器、定值电阻(R 1=5Ω和R 2=10Ω)、开关、导线。以上器材为一组,每三人准备一组器材。(若学校条件好,可将干电池换成学生电源,实验效果更好。)

教学过程

一、创设物理情境,引导学生进入科学探究

教师:前面我们学习了电流、电压和电阻三个量的知识。这三个量之间的关系并不是孤立存在的,而是互相联系、互相影响的。如:①加在导体两端的电压越大,通过它的电流就会越大;②导体的电阻越大,流过它的电流就会越小。这些例子同时还揭示了电流与电压、电阻之间的定性关系。

如果知道一个导体的电阻值,还知道导体两端的电压值,你能不能计算出通过它的电流值呢?(或用数学表达式表示出来)

二、进行科学探究

1.提出问题

让学生回答:探究电流与电压、电阻之间有什么定量关系?

2.猜想或假设

应根据以下两个事实来引导和启发学生的想像力,进行猜想或假设

①加在导体两端的电压越大,通过它的电流就会越大;

②导体的电阻越大,流过它的电流就会越小。

学生回答:

·可能是I=U/R;

·可能是导体两端的电压增大几倍,导体中的电流也增大几倍;

·可能是U=IR;

·可能是……。

3.设计实验(采用启发提问式,帮助学生设计实验)

以下教学过程是师生一问一答

问:我们所学电流、电压和电阻三个量,哪些量可以测量出,分别用什么仪器来测量?

答:能测量的量有:电流和电压,仪器分别为电流表和电压表。

问:电阻不能测量,我们怎样知道导体的阻值呢?

答:可以给出导体的电阻值。

问:也就是说在研究电流和电压、电阻之间关系时,我们是固定电阻不变,让电压发生改变,观察电流的变化,这种研究物理问题的方法叫什么?

答:控制变量法。

问:实验时,针对于某一导体测量一组电压和电流值,行吗?

答:不行。

问:为什么?

师生共同回答:多次测量可以减少误差,同时考虑到物理规律的客观性、普遍性和科学性,应该多测量几次。

教师还应进一步指出:不仅针对同一导体测量几组电压和电流值,同时还要更换定值电阻反复进行实验,这种研究物理问题的方法是不可忽视的。实验时,给出了二个不同的定值电阻(R 1=5Ω和R 2=10Ω)

问:我们在实验要多次测量电压和电流值,那么怎样去改变导体两端的电压和通过它的电流呢?

学生1答:改变电源的电压,如:增减串联的干电池的节数。

学生2答:用滑动变阻器来改变。

师总结指出:同学们知道了改变定值电阻两端电压的方法,请大家根据你认为最适合你的方法和刚才我们设计的。思路,对照自己桌前的器材选择你所需的实验仪器,并画出能够同时测量电压和电流的电路图。

4.进行实验

实际操作中,要提醒学生注意以下几个问题:

·连接电路时,开关应处于断开状态,滑动变阻器的滑片应放到最大阻值的位置上。

·测量次数不要过多,根据时间而定,一般测量三次或四次左右。

·若用滑动变阻器来改变导体两端的电压的情况下,尽量使定值电阻两端的电压成整数倍地变化(如:1V,2V,3V……)。同样若用干电池(或学生电源)改变电源电压时,也应该使电源电压成整数倍地变化。

教师巡回指导学生进行实验,指出学生在实验中错误,并要求学生实事求是地填写实验数据。

5.分析和论证

数据处理时,可引导学生仔细思考测量数据:分析电压是怎样发生变化,从而影响到电流的怎样变化;同时还应考虑到实验会有误差,可能数据不很一致。得出电流、电压的关系的结论。

结论:电阻相同时,通过导体的电流和导体两端的电压成正比。

然后指导学生用测量的数据对照课本图7.1-1画出U-I图。

启发学生对比数学中的一次函数的知识,推导出U-I表达式:U=IR 。

6.评估

要求学生在探究报告反思自己的探究活动一些问题,如:

(1)实验设计方案是不是最优的,还可能会存在着不合理的地方。

(2)操作中有没有什么失误,读数时会不会有失误。

(3)测量结果是不是可靠的。

(4)探究中是不是还有哪些问题还不清楚,哪些问题弄明白了。

……

7.交流

要求学生课后进行交流,交流时,可以相互交换各自的探究报告,也可以口头表述自己在探究与他人不同的意见,同时还应听取他人正确的意见。交流时,不应只是交流探究结论,交流的重点应放在探究的过程中。

如:为什么我的猜想和别人不一样?

为什么我的方法与你不一样?

为什么你能得出这样的结论,我的结论不和你一样?

……

作业:

完成探究报告,并在报告写出对自己所选的实验探究过程进行评估。

高二物理教案【第三篇】

一、教材分析

磁场的概念比较抽象,应对几种常见的磁场使学生加以了解认识,学好本节内容对后面的磁场力的分析至关重要。

二、教学目标

(一)知识与技能

1.知道什么叫磁感线。

2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况

3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。

4.知道安培分子电流假说,并能解释有关现象

5.理解匀强磁场的概念,明确两种情形的匀强磁场

6.理解磁通量的概念并能进行有关计算

(二)过程与方法

通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。

(三)情感态度与价值观

1.进一步培养学生的实验观察、分析的能力。

2.培养学生的空间想象能力。

三、教学重点难点

1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向。

2.正确理解磁通量的概念并能进行有关计算

四、学情分析

磁场概念比较抽象,学生对此难以理解,但前面已经学习过了电场,可采用类比的方法引导学生学习。

五、教学方法

实验演示法,讲授法

六、课前准备:

演示磁感线用的磁铁及铁屑,演示用幻灯片

七、课时安排:

1课时

八、教学过程:

(一)预习检查、总结疑惑

(二)情景引入、展示目标

要点:磁感应强度B的大小和方向。

[启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢?

[学生答]磁场可以用磁感线形象地描述。----- 引入新课

(老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向

(三)合作探究、精讲点播

板书1.磁感线

(1)磁感线的定义

在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。

(2)特点:

A、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极。

B、每条磁感线都是闭合曲线,任意两条磁感线不相交。

C、磁感线上每一点的切线方向都表示该点的磁场方向。

D、磁感线的疏密程度表示磁感应强度的大小

演示用铁屑模拟磁感线的形状,加深对磁感线的认识。同时与电场线加以类比。

注意①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。

②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。

2.几种常见的磁场

演示

①用铁屑模拟磁感线的演示实验,使学生直观地明确条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)各自的磁感线的分布情况(磁感线的走向及疏密分布)。

②用投影片逐一展示:条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)。

(1)条形、蹄形磁铁,同名、异名磁极的磁场周围磁感线的分布情况

(2)电流的磁场与安培定则

①直线电流周围的磁场

在引导学生分析归纳的基础上得出

a直线电流周围的磁感线:是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。

b直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

②环形电流的磁场

a环形电流磁场的磁感线:是一些围绕环形导线的闭合曲线,在环形导线的中心轴线上,磁感线和环形导线的平面垂直。

[教师引导学生得]

b环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。

③通电螺线管的磁场。

a通电螺线管磁场的磁感线:和条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极;内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线(图5)

b通电螺线管的电流方向和它的磁感线方向之间的关系,也可用安培定则来判定:用右手握住螺线管,让弯曲四指所指的方向和电流的'方向一致,则大拇指所指的方向就是螺线管的北极(螺线管内部磁感线的方向).

③电流磁场(和天然磁铁相比)的特点:磁场的有无可由通断电来控制;磁场的极性可以由电流方向变换;磁场的强弱可由电流的大小来控制。

说明由于后面的安培力、洛伦兹力、电磁感应与磁感应强度密切相关,几种常见磁场的磁感线的分布是一个非常基本的内容,不掌握好,对后面的学习有很大影响。

3.安培分子电流假说

(1)安培分子电流假说

对分子电流,结合环形电流产生的磁场的知识及安培定则,以便学生更容易理解它的两侧相当于两个磁极,这句话;并应强调这两个磁极跟分子电流不可分割的联系在一起,以便使他们了解磁极为什么不能以单独的N极或S极存在的道理。

(2)安培假说能够解释的一些问题

可以用回形针、酒精灯、条形磁铁、充磁机做好磁化和退磁的演示实验,加深学生的印象。举生活中的例子说明,比如磁卡不能与磁铁放在一起等等。

说明假说,是用来说明某种现象但未经实践证实的命题。在物理定律和理论的建立过程中,假说,常常起着很重要的作用,它是在一定的观察、实验的基础上概括和抽象出来的。安培分子电流的假说就是在奥斯特的实验的启发下,经过思维发展而产生出来的。

(3)磁现象的电本质:磁铁和电流的磁场本质上都是运动电荷产生的。

4.匀强磁场

(1)匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。匀强磁场的磁感线是一些间隔相同的平行直线。

(2)两种情形的匀强磁场:即距离很近的两个异名磁极之间除边缘部分以外的磁场;相隔一定距离的两个平行线圈(亥姆霍兹线圈)通电时,其中间区域的磁场P87图,图。

5.磁通量

(1)定义: 磁感应强度B与线圈面积S的乘积,叫穿过这个面的磁通量(是重要的基本概念)。

(2)表达式:=BS

注意①对于磁通量的计算要注意条件,即B是匀强磁场或可视为匀强磁场的磁感应强度,S是线圈面积在与磁场方向垂直的平面上的投影面积。

②磁通量是标量,但有正、负之分,可举特例说明。

(3)单位:韦伯,简称韦,符号Wb 1Wb = 1Tm2

(4)磁感应强度的另一种定义(磁通密度):即B =/S

上式表示磁感应强度等于穿过单位面积的磁通量,并且用Wb/m2做单位(磁感应强度的另一种单位)。所以:1T = 1 Wb/m2 = 1N/Am

(三)小结:对本节各知识点做简要的小结。

(四)反思总结、当堂检测

1.如图所示,放在通电螺线管内部中间处的小磁针,静止时N极指向右。试判定电源的正负极。

解析:小磁针N极的指向即为该处的磁场方向,所以在螺线管内部磁感线方向由ab,根据安培定则可判定电流由c端流出,由d端流入,故c端为电源的正极,d端为负极。

注意:不要错误地认为螺线管b端吸引小磁针的N极,从而判定b端相当于条形磁铁的南极,关键是要分清螺线管内、外部磁感线的分布。

2.如图所示,当线圈中通以电流时,小磁针的北极指向读者。学生确定电流方向。

答案:电流方向为逆时针方向。

(五)发导学案、布置作业

九、板书设计

磁感线:人为画出,可形象描述磁场

几种常见的磁场:安培定则:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向。

匀强磁场:磁场中各处电场强度大小相等方向相同。其磁感线是一些间隔均匀的平行直线。

磁通量:B与S的乘积,单位是韦伯,也叫磁通密度。

十、教学反思

本节内容与本章第一节内容联系较大可先复习第一节知识后进入新课的学习,并在学习过程中加入对应习题。注重演示如演示磁感线用的磁铁及铁屑,演示用幻灯片等使学生具有形象感。

高二物理教案【第四篇】

新课程强调“将学习的重心从过分强调知识的传承和积累向获取知识的探究过程转化,从学生被动接受知识向主动获取知识转化,从而培养学生的探究能力、实事求是的科学态度和敢于创新的精神”。为此本教学设计和教学实施就是采用学生实验探究和教师演示实验相结合的实验探究教学法。

教学内容

《普通高中课程标准实验教科书·物理(2)》(司南版)

教学目标

1、知识与技能

(1)知道向心力,通过实例认识向心力的作用及向心力的来源

(2)通过实验理解向心力的大小与哪些因素有关系,能运用向心力公式进行计算。

(3)知道向心加速度及其公式,能运用牛顿第二定律分析匀速圆周运动的向心力和向心加速度。

2、过程与方法

(1)经历形成向心力概念的过程,培养学生观察、分析、归纳能力。

(2)通过创设一定的问题情境,让学生经历探索向心力F与哪些因素有关的过程,学习控制变量法,培养学生分析论证等能力。

3、情感态度与价值观

学习科学研究方法和科学研究态度,发展学生对科学的好奇心与求知欲,使学生乐于探究自然界的奥秘,体验探索自然规律的艰辛与喜悦,培养学生主动参与活动的热情和与他人合作的精神,有将自己的见解与他人交流的愿望,敢于坚持正确观点,勇于修正错误,具有团队精神。

教材分析

《向心力和向心加速度》是司南版必修2第三章第二节。本节是本章承上启下的重要知识,学好这一节可以为学好本章应用部分以及万有引力的应用作必要准备。 教材先讲向心力,后讲向心加速度,回避了用矢量推导向心加速度这个难点,通过实例给出向心力概念,再通过探究性实验给出向心力公式F=mrω2或 F=mv2/r,之后直接应用牛顿第二定律得出向心加速度的表达式a=rω2或a=v2/r,顺理成章,便于学生接受。

学情分析

在前面的教学中,学生已经学习了匀速圆周运动。知道描述匀速圆周运动快慢的物理量有线速度、角速度、周期、转速等,并理解它们之间的关系。知道在传动装置中,共轴的轮子上各点的角速度相等;皮带转动(不打滑)中,凡和皮带接触的点,线速度的大小相等。这些都为本节课的学习奠定了基础。但学生只是表面知道匀速圆周运动是一种变速运动,因为它的线速度方向时刻在变,更深一步来分析,为什么线速度的方向时刻在变?是什么力来改变物体的这种运动状态,这个力有何特点?学生将带着这些疑问来进入本节课的学习。

教学过程

一、引入新课

1、 设置情景

教师做“水流星”实验,并设下疑问:为什么盛水的杯子以一定的速度做圆周运动,水不从杯里洒出,甚至杯子在竖直面内运动到最高点时,杯口已经朝下,水也不会从杯里洒出来?

[在课堂上创设真实可见的物理情景,通过演示实验的现象,使学生产生悬念,激发好奇心和探索欲望,培养学生把生活与物理联系一起的习惯。]

2、 复习提问

(1)什么是匀速圆周运动?

(2)“匀速”的含义是什么?

在上节课的基础上,学生很快得出答案。教师引导学生分析:由于匀速圆周运动的速度方向时刻在变,所以匀速圆周运动是变速曲线运动。而力是改变物体运动状态的原因。那么做匀速圆周运动的物体所受合外力一定不为零。那么物体所受的外力有何特点?加速度怎样呢?指出:这两个问题即是我们这节课要研究的问题,且通过这节课的学习大家即可自行解释前面小实验的因果。

[采用这样的导入法是在复习旧知识的基础上,提出将要进一步研究的问题,从而使学生对讲授的新内容产生迫切求知的欲望,主动积极开展思维活动,进入新课的学习。同时能给学生一种知识的整体感。]

二、向心力

1、实验探究“小球在光滑水平面做圆周运动”。

(1)、步骤

①一个小球,拴在绳的一端,绳的另一端固定于桌上,原来细绳处于松驰状态

②用手轻击小球,观察绳绷直前后小球的运动情况。

(2)、借助课件引导学生讨论、分析:

①绳绷紧前,小球做匀速直线运动,小球受到哪些力的作用?

②绳绷紧后,小球做匀速圆周运动,小球受到哪些力的作用?合外力是哪个力?这个力的方向有什么特点?这个力起什么作用?

(3)、通过讨论得到:

①做圆周运动的物体始终受到一个指向圆心的力的作用,这个力叫向心力。

②向心力指向圆心,方向不断变化。是变力。

③向心力的作用效果——只改变运动物体的速度方向,不改变速度大小。

[这实验简单易做,效果明显,通过亲身感受学生获得了成功的乐趣。讨论时教师应适时介入引导学生得出正确的结论。]

2、课件展示动画:

(1)圆锥摆

(2) 物体相对转盘静止,随盘做匀速圆周运动

(3)汽车转弯

(4)卫星绕地球运行

3、向心力的来源:通过对以上四个圆周运动实例的分析得出向心力的来源可以是某一个力(重力、弹力、摩擦力)或几个力的合力,也可以是某个力的分力。

4、应用:学生尝试解释“水流星”的实验现象。

[向心力的来源是学生在本章学习中的一个难点,用多媒体呈现直观刺激材料,易引起学生注意,提高学习兴趣。 圆锥摆等现象中,物体都做圆周运动,具有运动方面的共性,由此启发学生对这些物体的受力进行分析,寻找受力方面的共性,使学生经历了分析、比较、归纳等思维过程,也体验到了成功的喜悦。学生在未来的学习中可能将向心力当成独立的一个力,教师此时应特别指出:受力分析时, 不能多出一个向心力。且①物体做匀速圆周运动时,向心力就是物体所受到的合外力。②物体做非匀速圆周运动时,向心力物体并非是所受到的合外力。]

三、 向心力的大小

1、 实验探究:感受向心的大小

让学生利用身边的材料如钥匙串、橡皮擦、笔、细绳等动手实验并感受向心的大小。

(1)让学生用细线联结钥匙串、橡皮擦、笔等,然后拉住绳的一端,让钥匙串、橡皮擦、笔等尽量做匀速圆周运动,改变转动的快慢、细线的长短多做几次。

(2)引导学生猜想:向心力的大小可能与物体的质量、角速度、半径有关。因此在探究向心力大小实验中应采用控制变量法来研究这一问题。

[该小实验在此做了改动,与课本上的不尽相同。做该实验时学生的感受更直接,更易操作。提醒学生实验时应使物体尽可能在水平面内做圆周运动,这样绳的拉力近似等于向心力。]

课件展示:

2、 实验探究向心力大小

(1)实验方法:控制变量法

(2)介绍向心力演示器的构造和使用方法。

(3)实验过程

①质量不同的钢球和铝球,当它们运动的半径r和角速度ω相同时,比较向心力的大小

②两个质量相同的小球,保持运动半径相同,观察向心力与角速度之间的关系

③两个质量相同的小球,保持小球运动的角速度相同,观察向心力的大小与运动半径之间的关系

(4)实验记录表格

实验质量比值(m1:㎡)半径比值(r1:r2)角速度比值(ω1:ω2)向心力近似比值(F1:F2)123

(5)实验结论:

①实验表明物体做圆周运动所需向心力大小为:

F=mω2r (式中F表示向心力,m表示物体的质量,ω是物体做圆周运动的角速度,r是所做圆周运动的圆周半径。)

②应用线速度和角速度的关系,上述公式可变形为:

F=mv2/r (式中v是做匀速圆周运动的线速度)

[对于控制变量法学生已有一定程度的认知,因此在学生的自主探究并提出猜想后通过演示实验师生一起探究最后得出向心力大小的关系式。在介绍向心力演示器的构造和使用方法时教师可结合传动装置中,共轴的轮子上各点的角速度相等,皮带传动(不打滑)中,凡和皮带接触的点,线速度的大小相等这一知识点让学生思考怎样控制角速度不变。当学生明白这一问题后,教师的演示也可换成学生的演示。不然,台上的忙得不亦乐乎,台下的却不知所以然,纯看热闹。]

四、向心加速度:

⒈ 定义: 由向心力产生的加速度叫向心加速度。

2、物理意义: 它是表示速度方向变化快慢的物理量。

3、向心加速度的大小与方向

(1)引导学生利用牛顿第二定律推导出向心加速的表达式----a=ω2r.

向心力的大小还可以用F=mν2/r来表达,同样向心加速度也可表示为--a=ν2/r.

(2)方向:与向心力的的方向一致。沿半径指向圆心,方向不断变化,所以匀速圆周运动是变加速运动。

4、动动脑:a=ω2r、a=ν2/r ,a与r究竟是成正比呢,还是成反比?

指出:当w一定时,a∝r

当v一定时,a∝1/r

5、课本例题:在航空竞赛场里,由一系列路标塔指示飞机的飞行路径。在飞机转弯时,飞行员能承受的最大向心加速度大小约为6g(g为重力加速度)。设一飞机以150 m/s的速度飞行,当加速度为6g时,其路标塔转弯半径应该为多少?

六、小结[在小结中需给学生指出,向心力和向心加速度的公式虽然是从匀速圆周运动中推导出来的,但这些公式对变速圆周运动中求某点的向心力和向心加速度也适用。]

七、作业:P72 3、4、5小题

相关推荐

热门文档

18 1440036