首页 > 学习资料 > 教学反思 >

分数的基本性质教学反思【推荐4篇】

网友发表时间 1236806

【前言导读】此篇优秀教学范文“分数的基本性质教学反思【推荐4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

分数的基本性质教学反思【第一篇】

《分数的基本性质》是人教版小学数学五年级下册的资料,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮忙,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用"猜想和验证"方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分资料我是这样设计教学的:

一、迁移引入,沟通新旧知识的联系。

学习分数的基本性质能够利用商不变的性质进行正迁移,所以我在复习环节时出示:"12÷4=3120÷40=31200÷400=3,问:观察这三道算式,你回忆起以前学过的什么规律根据除法和分数的`关系,猜猜看分数也有这样的规律吗帮忙学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。

二、用故事情景引入,增强解决问题的现实性。

教学一开始,就以一段故事《三个和尚分饼》引入课题,这样不仅仅激发了学生的学习兴趣,更调动了学生的求知欲望,充分运用了猜测和情景引入等方式,吸引学生主动参与到对新知识的探究过程中,把抽象的分数基本性质具体化了。然后,我抓住分数基本性质的本质属性,透过让学生动手操作来发现三个分数之间的相等关系,之后引导学生一齐探索这三个分数之间存在的规律,从而把具体的知识条理化,归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后再提出为什么那里的相同数不能为零,并透过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察潜力、动手操作潜力、逻辑思维潜力和抽象概括潜力的培养。

三、运用知识,解决实际问题。

先进行基本练习,深化对分数的基本性质认识,透过应用拓展,使学生加深对分数的基本性质的理解,如游戏:老师写一个分数,你能写出和老师相等的分数你能写几个写的完吗在写的时候,你是怎样想的1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4…的时候,b分别=a和b为什么有怎样的关系为什么有这样的关系呢并培养学生运用所学的知识解决实际问题的潜力。本节课出现的问题也很多,如在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子,如果能有把这两个规律之间的转化采用举例、填空的形式,能给学生以直观的体验,胜过用语言的描述。

分数的基本性质教学反思【第二篇】

“找规律”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的,对这部分资料我是这样设计教学的:这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅仅对学生提出了挑战,而且对老师也提出了更大的挑战。用故事情景引入,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。最后运用知识,深化对分数的基本性质认识,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的潜力。

找规律是义务教育课程标准实验教科书第十册第三单元资料,这节课是在学生学习了分数的`好处基础上进行教学的,通过观察,合作探究总结出分数的基本性质,本节资料是为以后学习约分和通分打基础,在教学中教师注重“过程与结果的结合”,“合作学习与自主学习”的结合,“创设情境与创新精神”的结合,教学中,教师用生动搞笑的故事引入新知,激发学生学习的兴趣,使学生感到学习新知很有兴趣,不枯燥无味。巧妙地创设问题情境,让学生产生迫不及待地要求获取新知识的情感,再通过拓展外延,从具体事例中抽象出事物的内在规律,这一环节重点在掌握了学生的认识规律基础上,强调知识的来源,让学生自己挖掘规律,掌握数学知识产生的内在规律,激发起学生用心思维的动机。

通过小组的合作以及教师的引导,发现规律,总结规律,促进了学生相互帮忙,相互启迪,相互促进,发挥了讨论交流的作用,提高了学生学习的潜力。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知的理解,强化了学生运用新知解决实际问题的潜力,使学生构成了必须的技能技巧。

《分数的基本性质》教学反思【第三篇】

《分数的基本性质》这节课我引导用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。进一步培养学生用数学的思想方法思考、解决实际生活问题的能力。这节课是在学生已掌握了商不变的性质之后,并在已有知识、数学活动经验的基础上进行的,我是这样设计教学的:

1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。

2、创设了实用的生活情境,引导学生发现、提出问题,充分发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较,验证自己的猜想。通过动手操作三张长方形得纸条,把它们平均折成2份、4份、8份,取其中得1份、2份、4份,图上颜色,并用分数表示,来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。

3、运用知识,解决实际问题。为了把知识转化为能力,练习题的设计注意了针对性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。

4、0除外的环节设计是本节课的亮点,在学生根据三个分数归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外。有效突破了难点。

本节课出现的不足是:创设了故事情境,出现了三个分数,但是没有利用好。出现了顾此失彼的现象;猜想的验证过程过于单一,只采用了折长方形纸条的方法来验证,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折正方形、分苹果图等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。在形成性质过程中,对分数基本性质与分数除法的关系,商不变的性质等进行了整合,只有部分学生了解,没有深入到全班。

在今后的教学中,需在给学生提供启迪创新思维的活动准备和空间,精心备课,立足学生实际,进一步提高教学实效。

分数的基本性质教学反思【第四篇】

分数的基本性质教学反思

分数的基本性质一课是本册教材第四单元的一个资料。这部资料是学生在学习了分数的好处、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律我觉得十分的重要。

本节课,我认为探索分数大小不变的规律是难点,运用这个规律来解决一些实际的问题是重点。那么在课堂中如何来体现这两方面,我想用故事来贯穿整个教学过程。

(一)情境的创设。

课的开始,我讲了一个猴妈妈分大饼的故事,(同学们,你们听故事吗,那老师给大家讲一个故事。猴山上的猴子最爱吃猴妈妈做的大饼了。有一天,猴妈妈做了3只大小一样的饼,他把第一只饼平均切成了4块,拿了一块给第一只猴子。第二只猴子看见了说:“妈妈,我要2块,我要2块。”于是,猴妈妈把第2只饼平均切成8块,拿了2块给第二只猴子。第三只猴子更贪,说:“妈妈,我要4块,我要4块。”于是,猴妈妈把第3只饼平均切成16块,拿了4块给第二只猴子。同学们,你们明白哪知猴子分得多吗?)透过分大饼这一故事目的是想创设了一种和谐愉悦的气氛,能激发学生的学习兴趣,更能激起学生探索新知的欲望。在课堂实施中,我发现学生还是爱听故事的,从这个故事中学生也能说出分到的饼的大小是一样的。并能十分流利地说出了每个猴子分到每个饼的1/4,2/8,4/16。之后我提出疑问,既然你们刚才说到三只猴子分到的饼一样多,那就意味着这三个分数的大小是相等的,那我们还没有学过分子和分母不一样的分数的大小比较,你怎样明白这3个分数大小相等呢?就引出了规律的探索的第一步。

(二)、规律的探索。

在故事中学生得出这3个分数大小相同后,为了给学生创设个性化的学习空间,我对学生说你能够根据老师发给你的材料来验证这三个分数的大小,如果你觉得不需要这些材料,那也能够不用。这样的设计我的目的是能够给予学生必须的探究空间,同时也增添活动的趣味性和挑战性。在学生实际操作中我发现,有的学生用3个大小一样的圆、有的用3张大小一样的长方形纸,也有的学生用了分数和除法的关系,运用这个关系的时候还用到了我们以前学过的商不变性质,解决了这3个分数的大小是相等的。因为在这个环节中有学生利用商不变性质来解决了这3个分数的大小,所以在揭示分数的基本性质后也没有再提出和商不变性质的关系。本来当学生透过实践的操作后发现这三个分数的大小是相等后,我追问:猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你能说出一组相等的分数吗?这个追问我的目的是等一下让学生观察规律时,只有一组分数觉得太少了,所以那里让学生再说出一组分数,带给更多的学习材料,以便学生更好的观察。在试教的时候,发现学生观察的时候不是一组一组观察,而是上下观察,所以本节课我就把这个环节做了调整。然后在老师的引导下,学生的独立思考,同桌的合作交流以及全班学生的交流,并

透过老师的板书,很清楚的观察到分子和分母是怎样变化的。因为这个规律只是在这1组分数中得出的,还不能代表这个规律是正确的,因此我提出疑问,是不是所有的分数只要分子和分母同时乘或除以相同的数,分数大小就不变呢?意思是让学生再举出一些例子来验证自己刚才发现的规律是确。听课的老师问我这个环节设计在那里是什么意思,有没有必要,他们感觉那里浪费了很多的'时间,以前也听过这一课,当时这位老师是没有让学生去验证自己的发现是不是正确的,之后听课的老师说到就凭一组材料来发现这个规律是不是太少了,是不是就应带给更多的材料让学生去发现。让学生去验证自己的发现。所以这个环节我就抱着试 一试的态度去上的,结果发现效果也不是很好,看来这个环节到底怎样上还得研究。最后自己发现的规律和书上的规律进行比较,得出相同的数“零”要除外的,从而完善规律。最后让学生说说这个规律中哪些字十分的重要,并仔细严读,更加牢固地掌握这条规律。当学生已经理解并掌握这个规律后,尝试让学生去解决生活中一些问题,因此在教学例2前,我出示了我们有2/5的学生参加学校的书法小组,有4/10的学生参加舞蹈小组,哪组参加的人数多?这样设计主要是为例2做铺垫,并让学生感受到化成分母相同而且大小

不变的分数是为以后分数大小的比较做好准备。做例2之前,我更关注的是如何让学生来理解这个题目的意思,让学生明白在做题目之前要先理解题目的意思,在课堂的实施中,发现学生理解的相当透彻。当请一位学生上来做的时候,这位学生直接在2/3的后面乘以4,之后我让学生擦掉,直接写答案,听课的老师说,为什么擦,我也说不出什么理由,但仔细一想,如果学生的这个错误好好的利用,那是十分值得的,因为那里一能够帮忙后进生理解利用分数的基本性质去怎样做,二注意书写的格式。由于比较紧张,也没有多大思考,因此就错过了一次很好的展示机会。最后由于时间比较紧,也没有用这个故事串联起来,本来那里还想问学生一个问题,说说猴妈妈是运用什么规律来满足三只猴子的要求,而且是分的这么公平的呢?如果小猴子要分4块,那候王怎分才公平呢?如果要5块呢?这个其实是思维的拓展,没有好好的利用,十分可惜。所以对后面的练习带来了麻烦。

(三)练习的设计

为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习用心性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面能够集中学生的注意力,另一方面也能够放松学生的情绪,让他们在简单愉快的氛围里学习知识,本课中设计了:①填空。3/5=3×()/5×()=9/()

4/()=48/60

7/49=3/()=()/7=

②决定。

①5/25=5÷5=25÷5=5×12=25×12

②12/20=12+2=20+2=14/24

③2/5=2×2/5=4/5

④5/8=5÷5/8×8=1/64

③游戏。老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎样想的?

④1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4的时候,b分别=?a和b为什么有怎样的关系?为什么有这样的关系呢?

由于时间紧张,因此练习的设计与原先的有所区别,只让学生填了4个很简单的填空,第二个练习是我写了一个分数1/3,比一比在最短的时间里,看哪个同学写的分数多,而且大小相等。在巡视的时候,我看到大部分学生是后一个分数的分子和分母是前一个分数的分子和分母2倍,然后就叫了一个学生回答,也没有肯定这位学生是回答的正确还是错误的,就急着把自己的想法写在黑板上,1/3=2/6=3/9=4/12,让学生说说看,老师写的对吗?因为课堂上的例子都是后一个分数与前一个分数都是2倍,3倍的关系,所以他们都说错了?原因是第3个分数的分子和分母不是第2个分数分子和分母2倍关系。时间紧迫,也没有好好的去利用这题。总之,一节课下来,问题多多,值得反思。

相关推荐

热门文档

21 1236806