首页 > 学习资料 > 教学反思 >

《比的基本性质》教学反思【汇编4篇】

网友发表时间 1247559

【前言导读】此篇优秀教学范文“《比的基本性质》教学反思【汇编4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《比的基本性质》【第一篇】

比例的基本性质教学内容:人教版第十一册四十八页,做一做,练习十二5~8教学目标:1、理解并掌握比的基本性质的内容。 2、理解最简整数比的含义,并能熟练判断最简整数比。 3、能利用比的基本性质化简比,掌握化简的方法。教学过程:一、 教学比的基本性质1、出示引入题一只长颈鹿高7米,一头大象高200厘米。说出这只长颈鹿和这头大象的身高比。生:7∶2 700∶200师:哪个比对呢? 这两个比的前项和后项都不相同,为什么两个比都对呢?生:7米就是700厘米,2米就是200厘米。师:对!那你们还能从另外的角度来说明这两个比也是对的呢?生:算比值。(生口答教师板书)2、出示18∶12与3∶2,请你们判断一下这两个比是否相等,为什么?生:相等。因为比值相等。生:比的前项和后项同除以了相同的数,这两个比是相等的。师:你怎么知道比的前项和后项同时除以了相同的数,这两个比就相等了呢?是根据比与分数之间的关系,利用分数的基本性质来判断的。3、写出与6∶8相等的比。生写教师巡视,汇报时板书。6∶8=3∶4=12∶16=24∶32=……这样的比可以写多少个?既然可以写无数个,我们就用省略好来代替。我们写的这些比都与6∶8相等吗?同意吗?4、师:请你们观察这三组相等的比,你能从中发现什么?把你的发现告诉同桌。汇报得出:比的前项和后项同时乘以或除以相同的数,比值不变。(板书)这就是我们今天所要学的新内容:比的基本性质(板书课题)5、判断①4∶15 =(4×3)∶(15÷3)= 12∶5②∶ =(×6)∶(×6)= 2∶3③16∶24 =(16÷0)∶(24÷0)=0∶0在比的基本性质中补充“0除外”④∶ =(×100)∶(×1000)= 125∶2500二、 化简比1、写出与12∶4相等的比,比一比谁写得既对又快。汇报时教师板书:12∶4=3∶1=24∶8=6∶2=48∶16=…这些比中哪个最简单?为什么说它最简单?生:3和1是互质数。师:对,我们把前项和后项是互质数的比,叫做最简整数比。请你划出你写的最简整数比。在与6∶8相等的一组比中,哪个是最简整数比?2、老师这里有一组比,请你判断哪些是最简整数比?36∶48 ∶ 11∶9∶ 师:36∶48为什么不是最简整数比?∶为什么不是?… 如何判断一个比是否为最简整数比呢? [首先比的前项和后项必须都是整数,再看前项和后项是否为互质数。]3、化简比① 师:你们能把36∶48化成最简整数比吗?生试做,汇报时板演,说明你是怎么想的?为什么36和48同时除以12而不是别的数?得出整数化简比时,直接除以前项和后项的最大公约数,可以得到最简整数比。② 把∶化成最简整数比。生试做。板演时说明为什么这样做?得出把小数化成最简整数比时,要先把小数化成整数再按照整数化简的方法继续做。③把 ∶ 化成最简整数比。让学生先思考如何解答,适当可以进行讨论,然后在让学生动笔做。汇报时,把各种解法都找出来,进行比较,得出分数化成最简整数比时,要先找出前项和后项分母的最小公倍数,再同时乘以最小公倍数得到最简整数比,并说明为什么。 师小结:我们把36∶48化成3∶4的过程叫做化简比。4、练习36∶15 ∶2 ∶ 学生板演,师总结三种题目形式化简比的方法。 三、总结 通过这节课共同研究和学习,你掌握了什么? 四、作业

《比的基本性质》 说课稿(人教版六年级上册【第二篇】

P45《比的基本性质》

一、学情分析

新课标中指出“小学数学教学必须从学生的生活实际出发,设计富有情趣和意义的活动,使他们从周围熟悉的事物中学习数学,运用数学。”其实就是让学生带着已有的生活经验、认知经验进入课堂,参与学习。在认知经验中,学生已经理解了除法的意义与基本性质、分数的意义与基本性质,以及分数与除法的关系等知识,掌握了分数乘、除法的计算方法,会解答分数乘、除法实际问题且理解了比的意义。有了这些知识的储备,学生只要进行知识的迁移、类比就可以自主探究出比的基本性质。学生理解并掌握比的基本性质,不但能加深对商不变性质、分数的基本性质、比的意义、比和分数、比和除法等知识的理解与掌握,而且也为以后学习比的应用,比例知识,正、反比例打好基础。

二、教材处理

根据教材的编排和学生已有的知识经验,我对本段教材的教学作出以下两点处理:

1、比的基本性质的探究

原教材联系比和除法、分数关系,通过“想一想”启发学生找出比中有什么样的规律?然后概括比的基本性质。我认为这样的编排是一种纯数理之间的推理,是符号之间的运算,欠缺生活气息,难以激发学生的探究热情。为此,我创设了一个生活情境,让学生在解决生活问题的过程中激发探究欲望,不着痕迹地完成了“比的基本性质”的探究过程。

2、例1的教学

例题由两道题组成。第(1)题采用“神州五号”的题材。此素材有利于渗透情感价值观的教育,且蕴含了相似变换的数学思想,是非常好的编排。第(2)题给出的两个比,我认为过于单调,且没能涵盖比的各种呈现形式,为体现课堂的动态生成,教学资源的丰富性,我采用了开放性的教学内容,让学生在学习第(1)题的基础上自主举例练习化简整数与分数、分数与分数、整数与小数、小数与小数、分数与小数等各种比。

以上两点处理均基于数学教育的生活化、数学资源的多元化的现代数学教育教学理念进行个性处理的,并以此提升学生在课堂教学中的主体地位,体现课堂教学的动态生成。

三、教学目标

①知识目标:使学生领悟并理解比的基本性质。

②能力目标:运用比的基本性质,让学生通过尝试来化简并探讨出不同类型比的多种化简方法,从而培养学生的应用能力和创新能力。

③情感目标:感受生活中处处有数学,数学就在我们身边。培养学生积极、自主的学习探究兴趣,使每个学生都尝到成功的喜悦。

四、教学策略

1、坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。

2、小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

3、“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让数学课堂真正成为学生活动的、创造的课堂。

五、教学程序设计

(一)创设生活情境,以激发学生的探索欲望

上课开始,我询问学生:“同学们喜欢喝果珍吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的果珍,这不小明的妈妈给小明准备了三杯果珍,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?多媒体课件演示:第一杯100毫升的水,10克果珍;第二杯200毫升的水,20克果珍;第三杯400毫升的水,40克果珍。同时我也以此在讲台上做了这个实验,同学们会兴致盎然,想尽各种办法帮助小明。

(设计意图是:因为每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣,兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外小明的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时又感受到“数学源于生活”。)

(二)引导学生发现规律,总结比的基本性质

同学们帮助小明解决问题,有的利用商不变性质,有的利用分数的基本性质。学生在师生互动中说出商不变性质,分数的基本性质的内容。(屏幕出示文字内容。)我接着询问在分数的基本性质里,有哪些关键词?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?通过类比让学生想到比的基本性质,从而引出课题。

(设计意图是:先通过学生回忆已学旧知,进而猜想比的基本性质从而引出课题,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考。)

接下来,让学生观察商不变性质与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?小组讨论,学生根据讨论结果发表意见,师生共同总结比的基本性质的内容。最后强调学习了比的基本性质,哪些词语是很重要,提醒同学们注意“同时、相同、0除外”这些关键词。

(设计意图是:让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。)

(三)理解最简整数比

通过类比让学生明白利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数。同样应用比的基本性质,可以把比化成最简单的整数比。小组讨论怎么理解“最简单的整数比”这个概念?然后达成共识:(1)是一个比;(2)前项、后项必须是整数,不能是分数或小数;(3)前项与后项互质。

(设计意图是“最简单的整数比”是本节课教学的难点,所以先类比然后让学生讨论最后对这个概念产生共识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。)

(四)教学例1

1、教学第(1)题

(1)出示例1的第(1)题。

(2)让学生阅读例题,说说图片中的事件,并按要求列出两个比,然后尝试运用比的基本性质把两个比化成两个最简单的整数比。

(3)师生点评,小结。

(4)提出问题:两面旗的长、宽不一样,但化成最简单整数比后是一样的,你发现了什么?

2、谈话:以上我们学习了利用比的基本性质化简比的知识,但比的呈现形式有很多,你能不能自己举例出不同的比,并进行化简呢?

(1)要求:分小组进行探究活动,每小组分别举出整数与分数、分数与分数、整数与小数、小数与小数、分数与小数的一个例,并在小组内完成探究练习。

(2)小组汇报探究成果。

(3)简单小结各种比的化简办法。

(这样的设计充分体现了学生的主体地位,把课堂交给学生,让课堂教学资源多元化,让学生在提出问题、解决问题中提升学习能力,在探究活动中体会到学习数学的乐趣)

(五)应用与拓展

1、完成教材46页的“做一做”。

2、判断。

(1)比的前项和后项都乘5,比值不变。

(2)比的前项扩大2倍,要使比值不变,后项应除以2。( )

(3):12化成最简整数比是3:48。( )

3、完成教材48页第6题。

(设计意图:层次性训练中,提高学生知识技能,发展学生个性。第1题是基础性练习,让学生巩固比的基本性质的应用。第2题是判断题,设计目的是加深学生对比的基本性质的理解。第3题使用讨论形式,通过全班的辩论,提高了学生解决问题的能力。)

《比的基本性质》教学反思【第三篇】

成功之处:

1、用迁移类推规律主动探索新知。本课中,我抓住了新旧知识的生长点,先是给学生复习了商不变的性质和分数的基本性质,然后引导学生联系比与除法、分数的关系,这样设计复习题,有助于学生通过寻求比与除法、分数的关系建构比的基本性质这一概念,符合学生认识事物的规律和迁移规律,铺就了由已学知识向将学知识迁移过渡的桥梁,学习的最近发展区有了实质的根基与准备。猜想引入让学习兴趣盎然,激起了探索的欲望,培养了思维联想、迁移的习惯与能力,让新知在过渡自然地融入。

2、小组合作成功有效。在整个过程中每个小组都能互相帮助,积极探讨,紧扣商不变与分数的基本性质分小组讨论比的基本性质,放飞思维,自主地依据已有知识经验,在合作、猜想、验证、交流中展开合理的想象与多角度思考,在有理有据表达、多种形式的对比中生成、完善了性质。大家学习热情很高,汇报展示紧扣主题,培养了孩子们的集体荣誉感,使学生从中体会到成功的喜悦,提高自己的学习兴趣,进而培养了学生的创新意识。

3、充分体现学生的'自主学习主线。无论是猜想验证比的基本性质,还是进行比的应用,化简比的方法的总结,无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,都留下了学生成功的脚印。

不足之处:

由于整节课只有35分钟,时间较短,另外学生的合作探索时间较长,汇报展示用时也较长,所以有前松后紧的感觉,时间分配不合理。刚刚进行完三种比的化简就下课了,没有进行练习,给学生完成家庭作业带来一定困难。这一缺陷下次一定注意。

比的基本性质【第四篇】

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

出示例1:把下面各比化成最简单的整数比。

(1)

问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)

(2)

问:这是一道分数比,怎样才能使它转化成整数比?(引

导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)

化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)

问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的'前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)

3.小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简的方法。

2.练习十四第5、7、8题。

3.练习十四第9题。

提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)

四、作业 。

1.练习十四第6、10题

2.一列火车15小时行驶1200千米。

(1)        写出行驶的路程和时间的比,并化成最简单的整数比。

(2)        求出这个比的比值,再说出这个比值的含义是什么?

相关推荐

热门文档

21 1247559