首页 > 学习资料 > 教学反思 >

数学课教学反思优质4篇

网友发表时间 1127224

【导言】此例“数学课教学反思优质4篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

数学教学反思【第一篇】

复习环节发现部分学生对求比值出现知识遗忘。特别是对于如何求两个小数或两个分数的比值,而这部分知识是本课判断能否组成比例的关键,所以在复习中必须舍得花时间,夯实基础后才能继续推进新授学习。

在总结比例概念的时机上,我对教材稍做修改。因为仅从一个例子就要求学生概括出比例的含义,对他们而言难度较大。因此,我在教学完:16.=60:40后,请学生们把四面国旗长和宽的比,也根据比值相等的组成等式。在此基础上再提问“怎样的式子叫做比例?”明显感觉学生们能够根据实践经验较准确地抽象出概念。同时,建议在巩固练习中补充概念的判断题,如:6:10和9:15,(虽然两个比的比值相等,但因为没有组成式子,所以不是比例。)

做一做第2题隐含着初中相似三角形对应边成比例的性质,教参给出了4个比例,“2∶4 = ∶3、4∶2 = 3∶、2∶ = 4∶3、∶2 = 3∶4。”其实应该共可写出8个比例。交换等号两边的比,还可以组成4个不同的比例:3=2:4、3:=4:2、4:3=2:、 3:4=:2。为什么仅仅相换了等号两边的比,就应该算作不同的比例呢?(必须结合比例各部分的名称来解释)怎样才能将4个数,既不重复又不遗漏地写出8个比例来呢?(我觉得在学习完比例的基本性质后更容易理解)。因此,将此题下移至比例的基本性质一课完成。

练习六第1题必须特别关注,因为其中第2、4小题体现了正比例的特点。因此,在教学中,我不仅要求学生判断“相对应的两个量的比能否组成比例”,还补充要求他们回答相应两个量的比值表示的含义。如第2小题,有的学生用箱子数量:质量,那么比值的含义应该为每千克的箱子是多少个。也有的学生用质量:箱子数量,那么比值的含义则为每个条子的质量。通过练习,强化数量关系,为后继学习作好铺垫。

练习六第2题,如果将4个数两两排列求比值,有12种情况,再从中找出比值相等的组成比例太麻烦,有没有比较方便快捷的方法呢?有!孩子们发现:将的数与第二大的数组成比;将剩下的两个数也按大数比小数组成比,就能够较快判断出所组成的比能否组成比例。

数学教学反思【第二篇】

对于梯形,学生在以前的学习中从未接触过,但大多数孩子都对它有着感性的认识。因此,这节课我结合学生的这种感性认识,设计了“猜图形——找图形——做图形”等几个环节,让学生在这些活动中,强化这种感性认识,同时,通过比较,通过老师的点拨,把这种认识上升到理性认识。如何让学生更主动地参与到这个过程中来,教师如何导才到位,是这节课重点需要注意的。

在教学中,我首先以“猜图形”导入,学生在猜的过程中,能体验到一种亲身参与,获得成功的体验。当最后一个梯形出现时,很多学生没能猜出,这样就不自觉地引起了他们的疑问:为什么会猜错?这样就很大程度激发了他们要了解梯形,了解梯形和平行四边形之间的联系的欲望。

在做图形之前,我没有让学生直接拿材料做,而是设计了一个在学具筐里找梯形的环节,这实际上是让学生对梯形进行一次再认,同时也很自然地引到下一个做图形的环节。

在“试一试”中,在学生自己独立量完了上底、下底和高之后,我没有简单地让学生说答案,而是请一位学生上来边指边说:上底是……下底是……,这样,既有了量的结果,同时也是对梯形各部分名称的巩固。在汇报第二个直角梯形时,我问:“什么它的高就是它的一条腰?”使学生在以往三角形学习的旧知上,更明确地知道了:如果梯形的一条腰和梯形的底互相垂直,那么这条腰就是梯形的高。不过遗憾的是,我应该再加一句:这是个什么梯形?在汇报到第三个梯形时,我又问:“为什么不再上下两条边之间画高?”学生进一步强化了梯形高的概念,同时也了解到并不是在上面的就叫上底,在下面的。就叫下底。

当然,在设计问题这块上,我做的还很不够,很多问题问的比较随意,并且没有什么明确的目的性与引导性,这点还需在今后的教学中,认真钻研教材,精心设计。

数学课教学反思【第三篇】

《小学数学课程与教学》第三章第一节的内容,以“小学数学课程内容的构成特征”为题,主要阐述了我国传统的小学数学内容结构、传统的课程内容结构与呈现方式的特征以及现代小学数学课程内容构成特征。其中我对第三部分即现代小学数学课程内容构成特征进行了重点的阅读与批注。

书中以xxxx版《全日制义务教育数学课程标准(实验稿)》出发,总结概括了60余年的小学数学课程的改革与发展。在论述中,我了解到了新的课程内容的组织的侧重点较之以前发生了很大变化。除了关注数学科学自身的逻辑结构之外,开始更多地关注儿童的兴趣和发展。虽然如今我们已经使用上了xxxx版《数学课程标准》,但是与之前相比,这一点也是相同的。而我国小学阶段新的数学课程内容的结构特征,也可以从3个不同的维度进行分析。

(1)从知识的领域切入。

我们经常提到的小学数学的四大领域,就是将数学课程从知识领域的角度去划分的。与时俱进,xxxx版《数学课程标准》将课程内容重新命名:“数与代数”“图形与几何”“统计与概率”“综合与实践”。

(2)从数学学习的目标切入看小学数学课程内容的'基本构成。

小学数学课程内容按照目标分为知识与技能,数学思考,解决问题,情感与态度四个维度。

看到这一划分,我一开始以为是与我们的三维教学目标是相对应的,即“知识与技能”“过程与方法”和“情感态度价值观”。但是当看到领域分类对应的特点和模块归属,我又感到它们之间既有联系,又有区别。

(3)从数学活动的素养切入。

xxxx版《数学课程标准实验稿》提出将数学学习变成学生的数学活动,以6大类数学素养构成了数学课程内容。对比xxxx版的《数学课程标准》,我发现了不同。xxxx版《数学课程标准》第5页:

在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。

通过阅读与对比,我们也可以将现今的xxxx版《数学课程标准》放在书中更高层次的课程结构发展中,这样能够更进一步的体会到小学数学课程内容的构成改革与发展。了解了这些变化与发展,我们才能更好地以之为依据,把握课程内容的切入方向,做好小学数学教育教学。

数学教学反思【第四篇】

初中数学教学反思——最为一名数学教育工作者,在这一段阶段的数学教学中,我思考了很多,因此总结了关于初中数学教学反思,期望对于其他的教育同行有所帮忙!

对学生来说是培养潜质的一项有效的思维活动,从所教学生来看,一部分学生根本不按老师要求进行作业后的反思,而这部分学生95%的数学潜质很低、成绩差,他们只会做“结构良好”的题目,以获得对问题的答案为目标,不会提问,这部分学生中,没有一个会对命题进行推广,而坚持写反思的学生状况就大不一样,因此,培养学生反思解题过程是作业之后的一个重要环节,具有很大的现实好处。

案例1,在完成解直角三角形“应用举例”的5个例题后,启发学生对5个题目的解题过程进行类比性反思,出示反思题目:请同学们再看看例题的解题过程,个性要注意在这些过程中相同方法的归纳概括,透过类比反思你能发现什么?在教师的引导下,同学们发现这几个题表面虽有许多不一样之处,但却有如下几点相同:⑴它们都有一个实际问题作背景;⑵都用到了方程的知识;⑶都用到了锐角三角函数的定义;⑷都用到了几何知识。在此基础上老师说:我透过解这几个题的过程的反思与同学们相似,我的反思结论是它们都运用了同一个解题思维策略或同一个解题模式,就是实际问题几何化,几何问题方程化,而列方程的根据正好是刚学过的锐角三角函数的定义,这样就把几个例题的思考过程和解题过程统一成了下列模式(板书,并解释每个箭头的好处)透过对5个例题解题后的反思,学生对解决这类问题的思路更加清晰了,并对反思的对象和方法有了一些体会。

案例2:胡玲同学在解完“梯形ABCD中,点E是腰AB上一点,在腰CD上求作一点F,使CF:FD=BE:EA”之后在作业的反思栏内写道:“老师,如果E点在底边上,如何在另一底上找到F,我有一种方法,不知对否?作法,1。连结AC;2。作EO//DC交AC于O;3。作OF//AB交BC于F。AE:ED=BF:FC。”同时,另一位学生在作业本中提出同样的问题,写道:“如果,在梯形ABCD中,点E是底边上一点,那么在另一底边找一点F,使AE:ED=BF:FC,应怎样找?”两位学生对同一个题目,提出了相同的问题,前者解决了问题,但不能用准确的数学语言表述问题,后者虽没有找到解决问题的方法,但能准确的描述问题,两位学生都良好的运用了直觉思维,这本身就是一种创新潜质,我及时公布了两位的猜想,并鼓励他们的这种主动猜想的创新精神,公布之后,同学们反映强烈,并进行了广泛的讨论,并且在讨论中思维更加深刻,问题得到引伸,方法也出现了多种。第二次作业本交上来了,一位学生对在讨论中提出的新方法给出了证明,他写道:“这天江乔说,如下图,已知梯形ABCD,E是底边的一点,延长腰交于F,连结EA交AB与G就是昨日胡玲要找的点。我觉得它说的是对的;证明如下:……(证明略)”我也即时公布了这位学生带给的江乔的发现和他的证明,并说,江乔能想

到这种方法,正如他在反思中所说,是他对解过的P244第22题的反思在那里起了作用,正因当时作了深刻的反思,从而对做过的题目有深刻的映象,自然很容易想到这种方法,因此,同学们应向他学习,解题以后不好停止,必须要多作反思。接下来的几天中,都有同学围绕着这个问题继续思考,并且有的同学还将此问题作了进一步引伸,如胡静在反思中写道:“任意多边形,知道一边上一点,就能够由胡玲那种方法,在其它任一边上找到一点,使与分得的线段的比等于这点分得的这边上的两条线段的比,只要先把多边形变成三角形后就行。对吗?”我批语道:“你已推广了胡玲提出的命题,很好,且你是对的,请试一试能不能给出证明”。

鼓励学生结合解题后的反思,提出问题,并将其指定为反思资料之一,既能充分发挥学生的主体性,又能构成师生互动、生生互动的教学情境,还能培养学生的不断探索的精神,从而使学生的创新意识得到保护和培养。这无疑对学生“心态的开放,主体的凸现,个性的张显”是十分有益的。

透过解题后对习题特征进行反思,用自己的语言或数学语言对习题进行重新概述,培养思维的深刻性,促进知识的正向迁移,提高解题潜质。思维的深刻性表此刻透过表面现象和外部联系提示事物的本质特征,进而深入地思考问题,解完题后经常透过反思题目的特征,加深对题目本质的领悟,从而获得一系列的思维成果,积累属于个人的知识组块,有助于培养思维的深刻性,从而促进知识的正迁移。

后记:初中数学教学反思仅供各位同行参考,期望各位老师从实际状况出发,最初相应的教学调整,祝各位教师们工作顺利!

相关推荐

热门文档

21 1127224