初一数学教学反思5篇
【前言导读】此篇优秀教学范文“初一数学教学反思5篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
初一数学教学反思1
七年级学生大多数是岁的少年,处于人生长身体、长知识的阶段,他们好奇、热情、活泼、各方面都朝气蓬勃;但是他们的自制力却很差,注意力也不集中。下面我谈谈这一学期来我对七年级数学的`几点体会:
一、明确学习的目的性:七年级学生学习积极性的高低,一般是由学习动机所决定。
二、精心设疑,激发学习兴趣,点燃学生对数学“爱”的火花:爱因斯坦有句名言,“兴趣是最好的老师”。一个人有了“兴趣”这位良师,他的知觉就会清晰而明确,记忆会深刻而持久,在学习上变被动为主动。在教学中,特别注意以知识本身吸引学生。巧妙引入,精心设疑,造成学生渴求新知识的心理状态,激发学生学习的积极性和主动性。如利用课本每一章开始的插图,提出一般的实际问题,这样既能提高学生的学习兴趣,又能帮助学生了解每一章的学习目的;此外,我还利用学生每天的作业反馈和单元测验成绩的反馈,进一步激发和培养学生的兴趣。
三、精心设计教学过程,改变课堂教学方法,适应生理和心理特点学生的学习心理状态:往往直接受到课堂气氛的影响,因此一定要把学生的学习内在心理调动起来,备课时要根据学生的智力发展水平和数学的心理特点来确定教学的起点、深度和广度,让个层次的学生都有收获。为了适应学习注意里不能长时间集中的生理特点,每节课授课不超过分钟,剩下的时间看书或做练习。
四、寓数学思想于课堂教学中数学观念、思想和方法:是数学科学中的重要组成因素,是数学科学的灵魂,教师在传授知识的同时要注重数学思想方法的教育,把常用课本中没有专门讲述的推理论证及处理问题的思想方法,适时适度的教给学生,这有益于提高学生的主动性和分析问题、解决问题的能力。如有理数这一章特别突出了数型结合的思想,紧扣数轴逐步介绍数的对应关系,启发学生从数与形两方面去发现问题、解决问题。练习时引导学生思考一般情形下的结论,从中渗透归纳的思想方法,促进其思维能力的形成。
其实,数学思想渗透到概念的定义、法则的推导,定理的问题证明和具体解答中,这就要求教师在教学过程中能站在方法论的高度讲出学生在课本的字里行间看不出的奇珍异宝,讲出决策和创造的方法,精心提炼,着意渗透,经常运用。
初一数学教学反思2
七年级学生大多数是岁的少年,处于人生长身体、长知识的阶段,他们好奇、热情、活泼、各方面都朝气蓬勃;但是他们的自制力却很差,注意力也不集中。下面我谈谈这一学期来我对七年级数学的几点体会:
一、明确学习的目的性:七年级学生学习积极性的高低,一般是由学习动机所决定。
二、精心设疑,激发学习兴趣,点燃学生对数学“爱”的火花:爱因斯坦有句名言,“兴趣是最好的老师”。一个人有了“兴趣”这位良师,他的知觉就会清晰而明确,记忆会深刻而持久,在学习上变被动为主动。在教学中,特别注意以知识本身吸引学生。巧妙引入,精心设疑,造成学生渴求新知识的心理状态,激发学生学习的积极性和主动性。如利用课本每一章开始的。插图,提出一般的实际问题,这样既能提高学生的学习兴趣,又能帮助学生了解每一章的学习目的;此外,我还利用学生每天的作业反馈和单元测验成绩的反馈,进一步激发和培养学生的兴趣。
三、精心设计教学过程,改变课堂教学方法,适应生理和心理特点学生的学习心理状态:往往直接受到课堂气氛的影响,因此一定要把学生的学习内在心理调动起来,备课时要根据学生的智力发展水平和数学的心理特点来确定教学的起点、深度和广度,让个层次的学生都有收获。为了适应学习注意里不能长时间集中的生理特点,每节课授课不超过分钟,剩下的时间看书或做练习。
四、寓数学思想于课堂教学中数学观念、思想和方法:是数学科学中的重要组成因素,是数学科学的灵魂,教师在传授知识的同时要注重数学思想方法的教育,把常用课本中没有专门讲述的推理论证及处理问题的思想方法,适时适度的教给学生,这有益于提高学生的主动性和分析问题、解决问题的能力。如有理数这一章特别突出了数型结合的思想,紧扣数轴逐步介绍数的对应关系,启发学生从数与形两方面去发现问题、解决问题。练习时引导学生思考一般情形下的结论,从中渗透归纳的思想方法,促进其思维能力的形成。
其实,数学思想渗透到概念的定义、法则的推导,定理的问题证明和具体解答中,这就要求教师在教学过程中能站在方法论的高度讲出学生在课本的字里行间看不出的奇珍异宝,讲出决策和创造的方法,精心提炼,着意渗透,经常运用。
我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固练习也做了不少,可数学成绩却迟迟得不到提高!这个问题确实应该引起我们的反思了。诚然,出现上述情况涉及诸多方面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表面,出现上述情况也就不奇为怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。
一、数学教学不能只凭经验
从经验中学习是每一个人天天都在做而且应当做的事情,然而经验本身的局限性也是很明显的,就数学教学活动而言,单纯依赖经验教学实际上只是将教学实际当作一个操作性活动,即依赖已有经验或套用学习理论而缺乏教学分析的简单重复活动;将教学作为一种技术,按照既定的程序和一定的练习使之自动化。它使教师的教学决策是反应的而非反思的、直觉的而非理性的,例行的而非自觉的。
这样从事教学活动,我们可称之为“经验型”的,认为自己的教学行为传递的信息与学生领会的含义相同,而事实上这样往往是不准确的,因为师生之间在数学知识、数学活动经验、这会社会阅历等方面的差异使得这样的感觉通常是不可靠的,甚至是错误的。
二、理智型的教学需要反思
理智型教学的一个根本特点是“职业化”。它是一种理性的。以职业道德、职业知识作为教学活动的基本出发点,努力追求教学实践的合理性。从经验型教学走向理智型教学的关键步骤就是“教学反思”。
对一名数学教师而言教学反思可以从以下几个方面展开:对数学概念的反思、对学数学的反思、对教数学的反思。
1、对数学概念的反思——学会数学的思考
对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从“教”的角度去看数学,他不仅要能“做”,还应当能够教会别人去“做”,因此教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。
简言之,教师面对数学概念,应当学会数学的思考——为学生准备数学,即了解数学的产生、发展与形成的过程;在新的情境中使用不同的方式解释概念。
2、对学数学的反思
当学生走进数学课堂时,他们的头脑并不是一张白纸——对数学有着自己的认识和感受。教师不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。
3、对教数学的反思
教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?
我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。
初一数学教学反思3
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。特别是有关于∏计算,学生一定要认真计算才能得出正确结果,三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
初一数学教学反思4
应该说《中心对称》这节课的教学效果与我设计的预期效果差不多。学生的配合度比较高。师生的研究学习互动的氛围比较活跃。
1、设计流程:图片欣赏-----中心对称图形-----应用-------图片欣赏------成中心对称----性质与判定----应用-----练习与反馈----小结。
2、主要用意:通过观察图片引起学生的兴趣,欣赏图片让学生在学习中体验数学中,中心对称的美,从实际图片的设计着手引入新课,在图形的运动变化中进行概念的教学,在观察中思考中心对称的性质以及如何识别。在例题的选择时注意加强中心对称的应用。在问题预设中注重学生的发展。出现问题或疑问时,加强了引导。注重对学生学习过程中问题的解决。按教材课本的要求,我让同学们欣赏图形、感受图形、识别图形,进而理解中心对称和中心对称图形的概念,体会对称中心的位置以及意义和价值,并感受中心对称图形与成中心对称的转化关系。在上课时,让学生们欣赏图形,观察图形,然后再理解图形,进一步识别图形,从而把概念教学融入其中。教学时根据新授内容预设学生可能出现的问题,加强应变并解决问题。以教学案为裁体,协调好课本教材、教学案和课件,注重从学生实际出发,上课以学生为主,加强学生的活动性、参与性,有意识的突出学生的主体地位,让学生有思考问题的时间和空间。在学生讨论“中心对称与中心对称图形”时,注重从整体的眼光中看待问题,让学生学会相互转化。当学生出现把对称中心这个名词说成中心点时,我及时板书加以强调。在板书设计中注重书写跟数学思想方法有关的内容,如“整体、组合、分割、转化”这样做使得学生学一定的数学思想方法,做到了潜移默化。在遇到预设不到的问题方面,充分地让学生主动参与,自主解决,充分发挥每个学生的参与意识和学习热情。对学生将会出现的问题作估计,课上解决,课后反思。
3、不足之处:一、根据学生的实际情况请学生画一个点关于对称中心对称的点时应在分析后进行现场演示,这样更加符合学生学情。三、我对学生的营造快乐学习研究氛围并不够。
今后的努力方向
(一)导学方面问题解决:体现新知识中数学问题的情境性和可接受性。设计一些问题情境引入新课,使学生可以将导学内容得以掌握,并能独立自学解决一定的数学问题;
(二)例题分析与变式训练中的问题解决:例题分析体现数学问题的呈现方式,并进行变式训练。
(三)课堂练习与课后作业的问题解决:课堂练习的反馈与反思,作业问题的反馈与反思;学生态度与积极性的培养。
初一数学教学反思5
这是我在片区教学中上的一节数学公开课,经过片区小组的听课、评课活动,给了我很大的启发,也使我在教学中多了些体会和思考:
《等式和它的性质》这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
回顾本节课,我觉得在一些教学设计和教学过程的把握中还存在着一些问题:
1、不能正确的把握操作的时间,没有达到应有的学习效果。作为教师所提出的实验操作的难易程度,应和所给
的讨论时间成正比。难一点的操作问题,应多给点时间,反之则少给点时间。这样既保证了实验的有效性,又不至于浪费时间。但在探索等式性质1中用天平实验的时间过长,而且总是停留在一个层面上,使活动没有真正起到最初的效果。
2、学中没能注重学生思维多样性的培养。数学教学的探究过程中,对于问题的最终结果应是一个从“求异”逐步走向“求同”的过程,而不是在一开始就让学生沿着教师预先设定好方向去思考,这样控制了学生思维的发展。如在研究等式性质1的过程,我是步步指导,层层点拔,惟恐有所纰漏,使得学生的思维受到了限制。
3、对于性质1中的“式子”未能做到合理的解释。
4、对于性质的运用,我采用老师问学生答的形式,没有照顾到全体学生的参与。
改进方法
1、个一小组做完实验后可以采取四人活动,让学生自己先去想你从实验中发现了什么,联想到了什么,由组长做好每一个组员的发言记录,通过观察思考、交流讨论体会实验中所能发现问题的多样性,由每组派代表回答,从学生回答中,引导学生归纳等式性质1。这样的合作讨论,能使学生讨论的答案不再统一在教师事先限定的框框中,学生讨论的结果可能会有很多是老师始料不及的,但也可能是精彩独到的。
2、在归纳等式性质1中,对于“式子”的问题可适当做引导。学生虽然没有学过整式,但却可以在第一个屏幕演示——两边同时加上一个三角物体的天平实验中,提出:两边加上的这个物体它的重量我们知道吗?有可能会是多少?对于这个物体的未知重量我们可以如何表示呢?从而引出把这个未知量当成一个式子看的概念
3、对于等式性质的应用,可让学
生在独立思考前提下进行小组活动,这样能使每个学生都能发挥自己的作用,每个学生都有表达和倾听的机会,每个人的价值作用都能显现出来,在这个过程,学优生得到了锻练,而学困生也在互补、互动中学到了知识,促进了发展。