小数乘法教学反思汇聚 小数乘法教学反思20篇简短篇(优推4篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“小数乘法教学反思汇聚 小数乘法教学反思20篇简短篇(优推4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
《小数乘法》数学教学反思【第一篇】
因为新课程提倡“自主探究、合作交流”的学习方式,结合我校堂构建模式要求的`问题“质疑---自解----建构”这一教学模式和10+30,3+1的教学 操作模块,。我将培养学生的自学能力,教会学生探究学习作为最最基本的目标,这不仅要关注学生掌握知识的多少,更重要的是要关注学生是否亲历探索过程,是 否真正理解数学、是否在思维能力,情感态度和价值观等方面得到发展。我紧紧抓住“推广”两个字进行教学,精心设计了“四巧”即“巧”引入,“巧”探究, “巧”应用,“巧”巩固。课堂上,我没有占用过多的时间去讲解,而是巧妙地点拨、引导。通过本节课的教学实践,我深深地体会到,留给学生自由发展的空间, 学生参与的是获得知识的全过程。不是模仿书本或接受教师提供的现成结论来进行学习,而是自己本人把要学习的东西发现或创造出来,这样他们对所学的知识点就 记得快,记得牢,同时又培养了良好的学习习惯,挖掘了创造潜能。
没有完美,本课教学完成后的发现不足之一是将定律迁移的过程有些生硬不是那么完美,其二是在验证过程似乎有些单一没有说服力。于是我决定对这两方面进行改进。进行第二次设计。
将25×95×4 125×( 17×8) 17×25+83×25 直接演变为:×95× ×(17×8) 17×+83×
四道算式直接加上小数点问学生可以怎样计算,,为什么要这样计算?学生质会质疑,这样更顺利的迁移到小数计算当中。解疑过程让学生每人举一例乘法交换律, 全班六十余人会有六十多种结果但都可以验证小数同样适用。教师还鼓励有新发现的学生。(其实不会有)。另外几种定律也是采取小组先交流再全班汇报。这样一 来突出了验证过程增强了广度。有利于学生掌握用运用。
小数乘法教学反思【第二篇】
小数乘法的资料有:小数乘整数;小数点搬家;小数乘小数;连乘、乘加、乘减的混合运算以及整数乘法运算定律推广到小数;它是在学生学习了整数四则运算和小数加减法的基础上进行教学的。我以为这一单元学生已有了整数乘法为基础,只要重点掌握了小数乘法的计算方法的第三步,学起来就应是比较简单的,可事实的状况大大出乎我的意料。
在每节新知教学后的练习中,学生的正确率都不容乐观。出现错误的现象主要有两方面:
1、方法上的错误:不会对位;计算过程出错。小数乘法的对位与小数加减法的对位相混淆;而不是末位对齐。我觉得还是要把两位数乘一位数、乘二位数、三位数的整数乘法的竖式让学生先算,先把这一知识点从学生大脑储存的记忆库中提取出来后,再进行小数乘法的竖式教学,学生容易掌握些。而且计算过程中花样百出的现象也会少些,如在竖式计算过程中小数部分的零也去乘一遍;每次乘得的积还得去点上小数点,两次积相加又要去对齐小数点,学生自己把自己网在了自己编织的网中。
2、计算上的失误:看成整数乘法算好后,忘加小数点;或小数点打错位置;或直接写出得数(如×的竖式下直接写出,无计算的过程),做完竖式,不写横式的得数等。
应对学生出现的这样那样的错误,使我不得不开始重新审视自己的课堂,审视我的学生,并对此我进行了深刻的反思:本单元不是我想象的那么简单,既要注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。
小数乘法教学反思【第三篇】
开学已经将近2个星期,转眼小数乘法已落实完毕。对于这个内容在往年的教学中学生会出现五花八门的错误,如列竖式时由于受小数加减法的影响一定要把小数点对齐,在计算的过程中出现了小数点,同时也就造成了积里的小数点位置的混乱。我们习惯把学生的错误归因于“粗心”,或者说学生没有理解“按照整数的乘法进行计算”,因此课后苦口婆心地解释“按照整数乘法进行计算”,结果收效甚微。
有了前车之鉴,这学期的教学特别关注这一点,(但也没想出什么号招)出乎意料的'是学生的作业中几乎没有出现往年的各种错误现象。仔细想来主要在于:首先从开始教师就比较注重让学生说计算的过程,说出“先把它看成积乘几得几,积发生了什么变化,要使积不变,小数点要‘回移’几位”,将整数乘得的积一并说出。其次在例题教学完整演示完毕,教师明确指出,右边板书的是计算的思考过程,如果每道题都这样写出来既费时又费纸,可以将思考过程融合在小数的乘法竖式中, “这时我们对待小数点是‘视而不见’”,同时及时板书,再次在学生练习、板演的过程中教师注重了细节的评价——不仅让学生说出“先看成几乘积得几-------”,同时特意指出学生点小数点的时机。如积石,有的学生是先写4再小数点,接着3和2,有的学生先写出整数的积234,然后确定小数点的位置。让学生观察比较两者的不同,并讨论正确的书写顺序。最后,还有一点事教师不像往年急于归纳计算方法,而是根据学生的表达“缩小了多少倍——扩大多少倍”逐步向“小数点移动多少位”过渡,开始大部分学生需要一定的时间进行小数点的移动确定积里的小数点位置,到练习一时教师才提出“有没有更快的确定积的小数点的位置的方法”,学生在积累了一定的感性经验的基础上很容易发现因数的小树位数与积得小数位数的关系。
看来有效和无效之间的区别不在于大的教学环节,而源于教师对教学细节的处理。
数学课小数乘法教学反思【第四篇】
今天学习了0╳5=0后,我让学生尝试解决试一试“130╳5=?”,这是一道末尾有0的三位数与一位数相乘的计算题。书本提供了三种计算方法:
第一种:列竖式计算,末尾对齐。
130
╳ 5
650
第二种:先计算13╳5=65,然后通过比较13╳5和 130╳5的异同,发现130是13的10倍,所以130╳5应该等于65的10倍,所以130╳5=650。
第三种:列竖式计算,与第一种的方法不同,先将13和5相乘,再在乘得的数末尾添上一个0。
130
╳ 5
650
在交流反馈中,我发现学生在学习了两三位数乘一位数的笔算方法后,基本上都是选择第一种方法做,学生只要运用0乘任何数都等于0这个道理后基本上都能算对这道题。而没几个学生用第二、第三种方法,可是这两种方法对学生明白算理和简便运算是非常重要的。怎么办呢?是照搬教案,将就塞给 全部学生?还是另想它法?我决定放一放,用第二课时再想办法让学生掌握也不迟。
在第二课中,我提出这样的一个问题:你知道45╳10=?这个问题一出来,很多学生有些吃惊,看起来很难似的,之前学生都没有接触过两位数乘两位数的计算方法。这时候我鼓励学生,只要大家动脑筋,一定可以做出来的。有了刺激,学生积极去思考谈论,全班反馈交流时学生梁心怡想到利用第二种方法去做,得出了正确的答案。学生听了都恍然大悟,对数学的学习兴趣大增!
接着为了巩固这种算法,我出了2道算式题:130╳5=?和13╳)差异网○(50=?,这两个变式都是以13╳5=65为基础,然后扩大10倍得出最后答案。学生很快就算出来了,我引导全班学生总结这类题目的计算方法:末尾有0的乘法计算,可以先不看0,把前面的数先算出来然后在末尾添上0。其实这时也把后面整十整百整千乘个位数的计算包含在里面了,这样一来,即学习了新知识,又复习和巩固了旧知识。
通过这2节课的学习,学生对末尾有0的乘法计算基本上都掌握了,并体验到了学数学的快乐!我为他们的进步而开心!课堂是生成的,灵活的。作为新老师,只要多思考,多学习,不断将自己的想法付诸与行动,一点一滴地积累,一定会成长起来的,我相信!