首页 > 学习资料 > 初中教案 >

八年级数学《勾股定理》教案优秀4篇

网友发表时间 946386

【阅读指引】阿拉题库网友为您分享整理的“八年级数学《勾股定理》教案优秀4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

勾股定理【第一篇】

课题:“勾股定理”第一课时

内容:教材分析、教学过程设计、设计说明

一、 教材分析

(一)教材所处的地位

这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:

1、 能说出勾股定理的内容。

2、 会初步运用勾股定理进行简单的计算和实际运用。

3、 在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理

本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:

教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、 教学过程设计

(一)提出问题:

首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。

(二)实验操作:

1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形a,b,c的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将c划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形a,b,c的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形c的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。

3、给出一个边长为,,,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

(三)归纳验证:

1、归纳 通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

2、验证 为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。

(四)问题解决:

让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

(五)课堂小结:

主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

(六)布置作业:

课本p6习题 1,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。

四、 设计说明

1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。

3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。

4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。

勾股定理【第二篇】

教学目标 

1、知识目标:

(1)掌握;

(2)学会利用进行计算、证明与作图;

(3)了解有关的历史.

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关的历史讲解,对学生进行德育教育.

教学重点:及其应用

教学难点 :通过有关的历史讲解,对学生进行德育教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程 

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来。

:直角三角形两直角边 的平方和等于斜边 的平方

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边

(2)学生根据上述学习,提出自己的问题(待定)

学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论。

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形。

方法二:将四个全等的直角三角形拼成如图2所示的正方形,

方法三:“总统”法。如图所示将两个直角三角形拼成直角梯形

以上证明方法都由学生先分组讨论获得,教师只做指导。最后总结说明

4、定理与逆定理的应用

例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长。

解:∵△ABC是直角三角形,AB=5,BC=3,由有

∴ ∠2=∠C

∴CD的长是

例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,

求证:

证法一:过点A作AE⊥BC于E

则在Rt△ADE中,

又∵AB=AC,∠BAC=

∴AE=BE=CE

证法二:过点D作DE⊥AB于E, DF⊥AC于F

则DE∥AC,DF∥AB

又∵AB=AC,∠BAC=

∴EB=ED,FD=FC=AE

在Rt△EBD和Rt△FDC中

在Rt△AED中,

例3 设

求证:

证明:构造一个边长 的矩形ABCD,如图

在Rt△ABE中

在Rt△BCF中

在Rt△DEF中

在△BEF中,BE+EF>BF

例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分。请你帮助计算一下,哪种架设方案最省电线。

解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

AD+AB+BC=3,AB+BC+CD=3

图3中,在Rt△DGF中

同理

∴图3中的路线长为

图4中,延长EF交BC于H,则FH⊥BC,BH=CH

由∠FBH= 及得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此图中总线路的长为4EA+EF=

∵3>>

∴图4的连接线路最短,即图4的架设方案最省电线。

5、课堂小结:

(1)的内容

(2)的作用

已知直角三角形的两边求第三边

已知直角三角形的一边,求另两边的关系

6、布置作业 :

a、书面作业 P130#1、2、3

b、上交作业 P132#1、3

板书设计 

探究活动

台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

(1)该城市是否会受到这交台风的影响?请说明理由

(2)若会受到台风影响,那么台风影响该城市持续时间有多少?

(3)该城市受到台风影响的最大风力为几级?

解:(1)由点A作AD⊥BC于D,

则AD就为城市A距台风中心的最短距离

在Rt△ABD中,∠B= ,AB=220

由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响。

故该城市会受到这次台风的影响。

(2)由题意知,当A点距台风中心不超过60千米时,

将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

该城市都会受到这次台风的影响

由得

∴EF=2DE=

因为这次台风中心以15千米/时的速度移动

所以这次台风影响该城市的持续时间为 小时

(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为 级。

勾股定理【第三篇】

教学目标:

1、知识目标:

(1)掌握;

(2)学会利用进行计算、证明与作图;

(3)了解有关的历史。

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关的历史讲解,对学生进行德育教育.

教学重点:及其应用

教学难点:通过有关的历史讲解,对学生进行德育教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来。

:直角三角形两直角边 的平方和等于斜边 的平方

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边

(2)学生根据上述学习,提出自己的问题(待定)

学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论。

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形。

方法二:将四个全等的直角三角形拼成如图2所示的正方形,

方法三:“总统”法。如图所示将两个直角三角形拼成直角梯形

以上证明方法都由学生先分组讨论获得,教师只做指导。最后总结说明

4、定理与逆定理的应用

例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长。

解:∵△ABC是直角三角形,AB=5,BC=3,由有

∴ ∠2=∠C

∴CD的长是

例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,

求证:

证法一:过点A作AE⊥BC于E

则在Rt△ADE中,

又∵AB=AC,∠BAC=

∴AE=BE=CE

证法二:过点D作DE⊥AB于E, DF⊥AC于F

则DE∥AC,DF∥AB

又∵AB=AC,∠BAC=

∴EB=ED,FD=FC=AE

在Rt△EBD和Rt△FDC中

在Rt△AED中,

第 1 2 页

勾股定理【第四篇】

         勾股定理(第1课时)教学案例

南漳县肖堰中学  尹世强

教学任务分析

教学目标

知识技能

了解勾股定理的文化背景,体验勾股定理的探索过程。

数学思想

在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

解决问题

1.       通过拼图活动,体验数学思维的严谨性,发展形象思维。

2.       在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。

情感态度

1.       通过对勾股定理历史的了解,感受数学文化,激发学习热情。

2.       在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

重点

探索和证明勾股定理。

难点

用赵爽证法证明勾股定理。

教学流程安排

活动流程图

活动内容和目的

活动1  欣赏图片,了解历史

活动2  探索勾股定理

活动3  证明勾股定理

活动4  小结、布置作业

通过对赵爽弦图的了解,激发起学生对勾股定理的探索兴趣。

观察、分析方砖图和方格图,得出直角三角形的性质——勾股定理,发展学生分析问题的能力。

通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探索精神。

回顾、反思、交流、布置课后作业,巩固、发展、提高。

教学过程设计

问题与情境

师生行为

设计意图

[活动1]

XX年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”。这个图案是本届大会的会徽。

(1)你见过这个图案吗?

(2)你知道为什么把这个图案作为这次大会的会徽吗?

教师出示大会照片及图片。

学生观察图片发表见解。

教师补充说明:这个图案被称为“赵爽弦图”。介绍勾股定理的历史。

本次活动中,教师应重点关注:

(1)是否提起了学生对勾股定理的历史的兴趣。(2)学生对勾股定理的了解程度。

从实际生活入手,提出“赵爽弦图”,为学生探索活动创设情境,激发学生学习兴趣。

[活动2]

毕达哥拉斯是古希腊著名的数学家,相传在25XX年前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

(1)观察方砖图,你能有什么发现吗?

(2)图中以等腰直角三角形的三边为边长的三个正方形的面积有什么关系?

(3)等腰直角三角形的三边有什么关系?

教师出示方砖图并提出问题。

学生观察图片,分组交流。

教师引导学生总结:等腰直角三角形的两条直角边平方的和等于斜边的平方。

教师要针对不同认识水平的学生引导其用不同的方法得出正方形的面积。

在本次活动中,教师应重点关注:

(1)给学生充足的思考时间,鼓励学生大胆说出自己的看法。

(2)学生能否计算出各个正方形的面积。

(3)学生能否将三个正方形的面积关系转化为直角三角形三条边的关系。

通过实际问题激发学生好奇心,探索和主动学习的欲望。

渗透从特殊到一般的数学思想,为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力。

鼓励学生从不同角度寻求解决问题的方法,并通过对方法的反思,获得解决问题的经验。

让学生积极参与对数学问题的讨论,敢于发表自己的意见,能从交流中获益。

[活动3]

等腰直角三角形三边具有这样的性质,一般的直角三角形也具有这样的性质吗?

(1)你能计算方格图里三个正方形的面积吗?

(2)通过对面积的计算,你能说出直角三角形三边之间的关系吗?

(3)通过方砖图和方格图的观察和计算,你有什么新的发现?

教师出示图片并提出问题。

学生观察图片发表意见。

师生共同总结:直角三角形的两条直角边平方的和等于斜边的平方。

本次活动中,教师应重点关注:学生能否用不同的方法计算出大正方形的面积。

通过对大正方形面积的计算,培养学生的观察、分析能力,让学生学会灵活的计算方法。

历经从特殊到一般的探索过程,培养学生大胆设想的能力。

[活动4]

我们猜想的命题是否成立呢?这就需要我们对一个一般的直角三角形进行证明。到目前为止,对这个命题的证明方法已有几百种之多,下面我们就来看一看我国古代数学家赵爽的证明方法。

(1)把边长分别为a、b的两个正方形并在一起,你能通过剪、拼,把它拼成赵爽弦图吗?

(2)面积分别怎样表示?它们有什么关系?

(3)现在你知道XX年国际数学家大会为什么用赵爽弦图作会徽吗?

教师提出问题,学生在独立思考的基础上以小组为单位动手剪拼。

教师参与学生活动,帮助、指导学生完成拼图活动。

学生展示分割、拼接过程。

教师展示多媒体拼接过程。

本次活动中,教师应重点关注:

(1)学生是否积极参与了拼接活动。

(2)学生能否合理进行分割。

(3)学生能否用语言准确地表达自己的观点。

(4)学生是否有民族自豪感?

通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立空间观念,发展形象思维。

通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想。

通过多媒体展示拼图过程,使学困生也能感受拼图的全过程,加深理解。

通过对会徽问题的回答,培养学生的民族自豪感及勇于探索的精神。

[活动4]探究

问题1

一个门框的尺寸如图所示,一块长3m,宽的薄木板能否从门框内通过?为什么?

1m

2m

d

c

b

a

(1)横着、竖着能否通过?为什么?

(2)还可以尝试怎样过?

问题2

如图,一个3m长的梯子ab,斜靠在一竖直的墙ao上,这时ao的距离为,如果梯子的顶端a沿墙下滑,那么梯子底端b也外移吗?

o

d

c

b

a

教师提出问题1,学生分组讨论。

教师着重引导学生将实际问题转化为数学模型。

当确定横着、竖着都不能通过时,得出只能试试斜着能否通过,从中抽象出rt△abc,并求出斜边ac。

教师提出问题2,引导学生将实际问题转化为数学模型;

学生合作交流,讨论回答:

要求梯子底端是否也外移米,就是求bd的长,而bd=od-ob,只需先求出od、ob的长即可,于是把实际问题转化成了直角三角形问题。

在本次活动中,教师应重点关注:

(1)结合问题1训练学生用文字语言表达数学过程的能力;

(2)学生能否准确将实际问题转化为数学问题,建立几何模型;

(3)正确运用勾股定理解释生活中的问题。

通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活。

[活动5]

小结:

(1)勾股定理研究的是直角三角形三边之间的关系。

(2)本节课经历了从实际问题引入数学问题然后发现定理,再到探索定理,最后学会验证定理及应用定理解决实际问题的过程。

布置作业:

1、第76页 第1、2题;

2、收集有关勾股定理的证明方法。

学生谈体会。

教师进行补充、总结。

在本次活动中,教师应重点关注:

(1)不同层次的学生对知识的理解程度;

(2)学生是否能从不同方面谈感受;

(3)学生是否受到了爱国主义教育,探索科学奥谜的精神是否得到了培养。

第2题作业根据自己情况选择完成。

通过小结为学生创设交流的空间,调动学习的积极性,既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

让学生课外继续研究,进一步培养学习兴趣。

教学设计说明

“勾股定理”是几何中一个非常重要的定理,它提示了直角三角形三边之间的数量关系,将数与形密切联系起来,它有着丰富的历史背景,在理论上占有重要地位。

本节课经历了从实际问题引入数学问题然后发现定理,再到探索定理,最后学会验证定理及应用定理解决实际问题的过程,使学生亲身体验勾股定理的探索与验证过程,力争由传统的数学课程向实验课程的转变。

本节课从知识方法、能力与素质的层面确定了相应的教学目标,把学生的探索与验证活动放在首位,一方面要求学生在教师的引导下自主探索、合作交流,另一方面要求学生对对探索过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的。

本节课运用的是探究式教学方法,采用教师启发引导、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间,使学生以一个创造者或发明者的身份去探究知识,从而培养了学生自主学习的习惯。

相关推荐

热门文档

17 946386