七年级数学下册教案【参考5篇】
【阅读指引】阿拉题库网友为您分享整理的“七年级数学下册教案【参考5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
七年级下数学教学设计【第一篇】
一、变式教育的优点
(一)让学生更理解数学。如前文所说数学教学的目的是提高学生逻辑思维能力和思考能力。变式指在数学本质基础上通过其他方式和方法呈现数学内容。如一种数学题目在不同试卷上可以用不同方法表示,也可以通过不同方法解决。虽然解决一道数学题目的方法很多,但是题目考验学生能力的内容是一致的,即在本质上解答问题的思路是一致的,并且使用的数学公式是不变的。通过变式教学方法可以让同学更了解数学题目,即不停留于一种题型,让学生在了解公式的基础上灵活解决同类型题目。有句话一直牢记在我心中:要活学并活用。变式教学就是教会我们活用的技巧,让我们更好地解决问题,并在解决问题的同时提高自身能力。
(二)提高答题效率,减轻学生压力。目前学生压力大,课后作业占据学生大部分放松时间。学生在课后作业上面花费的时间越来越多,是因为课后作业不断增多还是因为学生不会做题而无法快速完成?这个问题的答案从优秀学生和后进学生身上可以反映出。学习好的学生几乎在学校就可以基本完成老师布置的作业,回家后还利用休闲时间对所学内容进行复习或者做自己买的练习,甚至可以挤出时间看课外书。但是成绩差的学生可能回家做了几个小时的作业还没有完成老师布置的作业,更别说做自己购买的练习或者看书复习了。这是什么原因?因为成绩不好的学生对学习的知识还不是很了解,并且不会灵活运用,他们只会做上课老师所讲的题目,如果让他们解与老师所讲的题目做法相同但是条件不一样的题目可能仍无法解决或者需要花费很久时间。这种情况下最好的解决办法就是运用变式教学,在学生了解教学内容基本概念之后给学生不断练习不同的题型,只有不断解题之后学生才可以牢记所学知识,并且能够活用,而且日后学习中还要不断练习和巩固。但是在变式教学运用上需要注意以下几点:第一,根据学生正常学习新内容的能力给学生安排合适练习;第二,加强学生对专业性概念的理解,只有在学生理解数学概念的基础上才可能运用概念,如果对概念都无法理解几乎无法解决那一类题目;第三,在学生学习新知识时,教育者可以把该知识与学生之前所学的知识相联系,让学生通过对旧知识的巩固学习新知识,容易理解和掌握现在要学习的知识。变式教学是保持数学题目中原有的实质,对题目进行改变并通过不同方式展现出的一系列问题变化,通过这样教学可以提高学生对知识的掌握程度,轻松地运用所学知识举一反三,快速解答问题,在很大程度上提高学生解题效率,并且减轻学生的学习压力。
二、通过变式教学加强学生对数学的学习
变式教学通过不改变题目基本知识点而改变题目题型为学生学习提供开放性的条件,让学生通过各方面研究和多角度思考解答该题目。在很大程度上提高学生的逻辑思维能力,让学生的反应更灵活,增强他们对做题的自信,并且更喜欢学习。在变式教学中,教育者可以给学生提供更多数学练习,在不同数学练习中学生只有不断研究、不断对比,并且愿意主动去思考、去提问,才可以不被其他同学比下去。但是做题时学生不应该死板,在做题前应思考今天学习了什么知识,并与之前所做的题目相比较。在不断练习之后,他们会发现题目想要考查的知识点是相同的,只是题型不同而已。经过对不同题型的练习和思考,提升学生的解题速度,让学生了解一道题目可以用不同方法解决,很好地提高逻辑能力。
三、变式教学的实施
(一)变式教学的运用时机。进行变式教学时教育者应该选择合适的时间,就是在学生初步了解一项数学知识之后。刚教完数学概念后,学生对该条概念还不是十分了解,这个时候教育者就需要让学生练习不同题目对该项知识加以深刻了解和巩固。需要注意的是老师给出的题目应当从简单到复杂、从小到大。这样可以让学生一步步详细了解概念,而不是一开始就给学生难题让学生花费过多时间解决,结果可能就是学生无法做出该题目,并且对概念的理解还和之前一样,那么这将是无用功。
(二)改变问题的条件。在学生解决一个问题之后老师可以适当改变问题中的条件让学生练习。如证明一个四边形是平行四边形,我们知道证明一个图形是平行四边形有许多种方法,如证明两组对边平行或者一组对边平行且相等,如果在一道证明题中该题之前的条件为一组对边平行且相等,那么我们可以转变为两组对边平行,结论还是该四边形是平行四边形。但是改变条件后是运用了另一个原理证出平行四边形,不仅巩固学习内容,还让学生了解到问题的解决可以采取多种方法。对学生解决其他问题运用多种办法有促进作用。变式教学是通过不同方法、不同角度等反映出教学中的基础问题。通过变式教学不断提高学生的逻辑思维能力、应变能力和创新能力,并且有力地开发学生的潜能,让学生更热爱学习,同时减轻学习压力。可以说目前教学中变式教育是一种重要的教学方法,并且取得一定的成果。
七年级新人教版数学整式教案【第二篇】
教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程(师生活动)设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类
4,-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力
培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结1,相反数的定义
2,互为相反数的数在数轴上表示的点的特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题第3题
2,选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征。这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用。所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想。
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法。
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。
课题:绝对值
教学目标1,掌握绝对值的概念,有理数大小比较法则。
2,学会绝对值的计算,会比较两个或多个有理数的大小。
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。
教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。并使学生体
验数学知识与生活实际的联系。
七年级新人教版数学整式教案
七年级下册人教版数学教学计划【第三篇】
一、指导思想:
根据学生的实际情况,从生活入手,结合教材内容。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级下册数学教学任务。
二、情况分析:
通过上学期考试情况,发现本班学生的数学成绩不甚理想。基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。
三、教学目标
知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。
过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。
情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。
四、教材分析
第五章、相交线与平行线:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
第六章、实数:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。
第七章、平面直角坐标系:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
第八章、二元一次方程组及不等式组:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。
五、教学措施
1、潜心钻研教材,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。
2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。
3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
六、课时安排
教学进度计划安排如下:
第一周 正数和负数及有理数 5课时
第二周 有理数的加减法 5课时
第三周 有理数的乘法 5课时
第四周 有理数的乘方 5课时
第五周 第一单元复习与单元测试 5课时
第六周 测试质量分析及小结 5课时
第七周 整式----单项式 5课时
第八周 整式----多项式 5课时
第九周 整式的加减 5课时
第十周 期中复习及段考 5课时
第十一周 段考测试质量分析及小结 5课时
第十二周 从算式到方程 5课时 第十三周 解一元一次方程(一) 5课时 第十四周 解一元一次方程(二) 5课时 第十五周
第十六周
第十七周
第十八周
第十九周
第二十周
实际问题与一元一次方程 第三单元复习及测试 测试质量分析及小结 多姿多彩的图形及直线 射线、线段、角 期末复习及考试 5课时 5课时 5课时 5课时 5课时 5课时
人教版七年级下册数学教案最新版【第四篇】
[教学目标]
1、理解平行线的意义,了解同一平面内两条直线的位置关系;
2、理解并掌握平行公理及其推论的内容;
3、会根据几何语句画图,会用直尺和三角板画平行线;
4、了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;
4、了解平行线在实际生活中的应用,能举例加以说明、
[教学重点与难点]
1、教学重点:平行线的概念与平行公理;
2、教学难点:对平行公理的理解、
[教学过程]
一、复习提问
相交线是如何定义的?
二、新课引入
平面内两条直线的位置关系除平行外,还有哪些呢?
制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念、
三、同一平面内两条直线的位置关系
1、平行线概念:在同一平面内,不相交的两条直线叫做平行线、直线a与b平行,记作a∥b、
(画出图形)
2、同一平面内两条直线的位置关系有两种:(1)相交;(2)平行、
3、对平行线概念的理解:
两个关键:一是“在同一个平面内”(举例说明);二是“不相交”、
一个前提:对两条直线而言、
4、平行线的画法
平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题、方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线)、
四、平行公理
1、利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”、
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行、
提问垂线的性质,并进行比较、
3、平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行、即:如果b∥a,c∥a,那么b∥c、
五、三线八角
由前面的教具演示引出、
如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对、
六、课堂练习
1、在同一平面内,两条直线可能的位置关系是、
2、在同一平面内,三条直线的交点个数可能是、
3、下列说法正确的是()
A、经过一点有且只有一条直线与已知直线平行
B、经过一点有无数条直线与已知直线平行
C、经过一点有一条直线与已知直线平行
D、经过直线外一点有且只有一条直线与已知直线平行
4、若∠与∠是同旁内角,且∠=50°,则∠的度数是()
A、50°B、130°C、50°或130°D、不能确定
5、下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直、其中正确的个数是()
A、1B、2C、3D、4
6、如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角、如果∠5=∠1,那么∠1∠3、
七、小结
让学生独立总结本节内容,叙述本节的概念和结论、
八、课后作业
1、教材P19第7题;
2、画图说明在同一平面内三条直线的位置关系及交点情况、
[补充内容]
1、试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行、
2、在同一平面内,两条直线的位置关系仅有两种:相交或平行、但现实空间是立体的,
试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)
人教版七年级数学下册教案【第五篇】
在本次活动中,教师应重点关注:
(1)学生从简单的具体实物抽象出相交线、平行线的能力。
(2)学生认识到相交线、平行线在日常生活中有着广泛的应用。
(3)学生学习数学的。兴趣。
教师出示剪刀图片,提出问题。
学生独立思考,画出相应的几何图形,并用几何语言描述。教师深入学生中,指导得出几何图形,并在黑板上画出标准图形。
教师提出问题。
学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征。学生可结合概念特征找到图中的两对邻补角与两对对顶角。
在本次活动中,教师应关注:
(1)学生画出两条相交线的几何图形,用语言准确描述。
(2)学生能否从角的位置关系上对角进行分类。
(3)学生是否能够正确区分邻补角、对顶角。
(4)学生参与数学学习活动的主动性,敢于发表个人观点。
《相交线与平行线》单元测试题
25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D
(1)若点C恰在EF上,如图1,则∠DBA=_________
(2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由
(3)若将题目条件“∠ACB=90°”,改为:“∠ACB=120°”,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)
《第五章相交线与平行线》单元测试题
一、选择题(每题3分,共30分)
1、如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()
°°°°