新人教九年级数学上册教案精编5篇
【序言】由阿拉题库最美丽的网友为您整理分享的“新人教九年级数学上册教案精编5篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
九年级上册数学的教案1
1.比喻:根据事物的相似点,用具体的、浅显、熟知的事物来说明抽象的、深奥的、生疏的事物,即打比方。作用:能将表达的内容说得生动具体形象,给人以鲜明深刻的印象,用浅显常见的事物对深奥生疏事物解说、帮助人深入理解。比喻的三种类型:明喻、暗喻和借喻。
不要把有“像”、“好像”的句子都看成比喻句。多数情况下,‘像“、“好象”、“仿佛”表示比喻,但是要注意以下几种情况不是比喻:
(1)表示比较的。如:他长得很像他哥哥。
(2)表示推测、揣度的。如:他刚才好像出去了。
(3)表示例举。如:本次考试很多同学的进步很大,像__等等。
(4)表示想象。如:闭了眼,树上仿佛已经满是桃儿、杏儿、梨儿。
2.拟人:把物当作人来写,赋予物以人的言行或思想感情,用描写人的词来描写物。作用:使具体事物人格化,语言生动形象。
3.夸张:对事物的性质、特征等故意地夸张或缩小。作用:揭示事物本质,烘托气氛,加强渲染力,引起联想效果。
4.排比:把结构相同或相似、语气一致、意思相关联的三个以上的句子或成分排列在一起。作用:增强语言气势,加强表达效果。
5.对偶:字数相等,结构形式相同,意义对称的一对短语或句子,表达两个相对或相近的意思。作用:整齐匀称,节奏感强,高度概括、易于记忆,有音乐美感。如:墙上芦苇,头重脚轻根底浅;山间竹笋,嘴尖皮厚腹中空。
6.反复:为了强调某个意思,某种感情,有意重复某个词语或句子。反复的种类:连续反复和间隔反复。连续反复中间无其他词语间隔。间隔反复中间有其他的词语。
7.设问:为了引起别人的注意,故意先提出问题,然后自己回答。作用:提醒人们思考,有的为了突出某些内容。
8.反问:无疑无问,用疑问形式表达确定的意思,用肯定形式反问表否定,用否定形式反问表肯定。
9.引用:引用现成的话来提高语言表达效果,分直接引用和间接引用两种。
10.借代:用相关的事物代替所要表达的事物。借代种类:特征代事物、具体代抽象、部分代替整体。
它山之石可以攻玉,以上就是一米范文范文为大家带来的5篇《新人教九年级数学上册教案》,希望可以启发您的一些写作思路。
数学九年级上教案2
本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。
一。完成九年级下册的内容
1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。
2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。
3.加强学生对数学知识的认识方法,培养他们正确的学习方法。
4.通过关於图形和证明的教学,进一步培学生的逻辑思维能力。与空间观念。
二。本学期在提高教学质量上采取的措施。
1.改进教学方法,采用启发式教学。
2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。
3.注意发展学生探索知识的能力,提高学生分析问题的能力。
4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。
5.鼓励合作学习,加强个别辅导,提高差生成绩。
三。教学具体安排。
1.第一周。平行四边形,矩形,菱形,正方形。
2.第二周。等腰梯形,中位线,反证法,以及复习题
3.第三周。数据分析与决策。
周。复习数与式
周。复习方程与不等式
周。复习函数
周。复习图形的认识
周。复习图形与变换
周。复习图形与坐标
周。复习概率与统计
周。复习课题学习
周。模拟考试与讲评
周。市检
周。重要知识点的再梳理
周。一些常见题的训练
周。做往年的中考题
周。考试方法和考试心理的辅导。
新人教九年级数学上册教案3
教学目标:
1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围。
3、会求函数值,并体会自变量与函数值间的对应关系。
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。
5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。
教学重点:了解函数的意义,会求自变量的取值范围及求函数值。
教学难点:函数概念的抽象性。
教学过程:
(一)引入新课:
上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有的值与它对应,那么就说x是自变量,y是x的函数。
生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。
解:1、y=30n
y是函数,n是自变量
2、 ,n是函数,a是自变量。
(二)讲授新课
刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。
例1、求下列函数中自变量x的取值范围。
(1) (2)
(3) (4)
(5) (6)
分析:在(1)、(2)中,x取任意实数, 与 都有意义。
(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .
同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .
第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零。 的被开方数是 .
同理,第(6)小题 也是二次根式, 是被开方数,
.
解:(1)全体实数
(2)全体实数
(3)
(4) 且
(5)
(6)
小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。
但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 .在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里 与 是并且的关系。即2与-1这两个值x都不能取。
例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次元,一般车保管费是每次一辆元。
(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;
(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。
解:(1)
(x是正整数,
(2)若变速车的辆次不小于25%,但不大于40%,
则
收入在1225元至1330元之间
总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。
对于函数 ,当自变量 时,相应的函数y的值是 .60叫做这个函数当 时的函数值。
例3、求下列函数当 时的函数值:
(1) (2)
(3) (4)
解:1)当 时,
(2)当 时,
(3)当 时,
(4)当 时,
注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有确定的值与之对应。以此加深对函数的理解。
(二)小结:
这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。
作业:习题组2、3、5
数学九年级上册优秀教案4
教学目标
知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。 过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。 情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。
教学重难点
教学重点:理解生活中常见的百分率的含义。
教学难点:正确计算常见的百分率。
教学过程
一、创设情境,探究导入
1、课件出示
看图,回答下面的问题。
(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?
(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?
2、百分数的意义
我们班有36%的学生参加了美术兴趣小组。
世界总人口中大约有50%的人口年龄低于25岁。
一瓶农夫果园饮料中果汁含量大约是10%。
我们班学生的近视率是45%。
3、小刚做了10道题,错了2道
做对的题数占总题数的几分之几?
做错的题数占总题数的几分之几?
做对的题数占总题数的百分之几?
做错的题数占总题数的百分之几?
求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b
4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几? 六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的 百分之几?
学生独立思考、同桌交流:尝试计算,得出结论。
5、谈话,导入新课
在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。
下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。
二、学习新知
1、教学例1——在具体情境中认识百分率,探究计算方法
(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?
(2)学生读题,分析题意,思考达标率的含义,尝试计算。
(3)指名板演并交流思维过程,集体订正。
(4)教师小结
指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数 除以 测试总人数 ×100%”。
谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。
2、教学例2——掌握百分率计算方法,认识百分率的价值
(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:
种子名称 实验种子总数 发芽数 发芽率
绿豆 80 78
花生 50 46
大蒜 20 19
(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。 (3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。
(4)比较,认识发芽率在生产实践中的价值。
通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。
3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。
(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。
(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。
(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。
(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式: ?率= 量 ? 除以总数量 ×100%
(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。
4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。
5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%? 三、巩固练习
1、填一填
①稻谷的出米率是85%,是指( )
的千克数占( )的千克数的百
分之八十五。
②甲数是乙数的 4/5 ,乙数是甲数的
( )%。
③20÷( )= 4/8 =( )︰24=( )%
2、选一选:
种一批树,活了100棵,死了1棵,求成活率的正确算式是( )。
一根钢管截成2段,第一段长 米,第二段占全长的60%,这两段钢管比较( )。 布置作业
1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。
2、完成练习二十第2、3、4题。
四、课堂小结
今天你有什么收获?生谈收获。
数学九年级上册优秀教案5
教学目标
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重难点
教学重点:理解比的基本性质,掌握化简比的方法 。
教学难点:化简比与求比值的不同。
教学过程
一、创设情境,生成问题
师:同学们,昨天我们刚刚学习了有关比的意义,谁能说说
1、什么叫比?
2、比与除法和分数有什么关系?
(生自由发言)我们以前还学过了分数的基本性质和除法中的商不变性质,还记得吗?谁来说一说?
课前准备:
同桌互相说一说:
1、除法中商不变的性质是什么?你能举例说明吗?
2、举例说明分数的基本性质。
二、探索交流,解决问题
1、猜测比的基本性质
除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比有没有基本性质?如果有,这条基本性质的内容是什么?(学生猜测,并相互补充)
2、验证猜测:学生以四人小组为单位,讨论研究。
汇报(预设):
① 6÷8=(6×2)÷(8×2)=12÷16
6:8=(6×2)∶(8×2)=12:16
6:8=(6÷2)∶(8÷2)=3:4
6÷8=(6÷2)÷(8÷2)=3÷4
② :=÷=
×5=2 ×5=
2:=2÷=
③ (3/4)÷(5/4)= (3/4)×(4/5)=3/5=
3/4×(2/3)=1/2 4/5×(2/3)=5/6
1/2 :(5/6)=1/2×(5/6)=
……
小组派代表说明验证过程,其他同学补充说明。
结论:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。(板书课题)
问:为什么0除外?(生自由回答)
这句话中你觉得哪些字比较重要?
相同的数可以是什么数?
不可以是什么数?
说一说:比的基本性质与商不变性质和分数的基本性质有什么联系和区别?
3、比的性质的应用
① 最简整数比
师:我们在学习分数的基本性质时,利用它化简分数,约分,通分,其实我们学习比的基本性质也可以用来化简比,把比化成最简整数比,知道什么是最简整数比吗?(生自由发言)
结论:最简整数比就是比的前项和后项都是整数,而且比的前项和后项的公因数是1,这就是最简整数比。
讨论:
怎样理解“最简单的整数比”这个概念?
小组里议一议。
师小结: 必须是一个比;前项、后项必须是整数,不能是分数或小数;前项与后项互质。
② 教学例1:化成最简整数比
课件出示例题,
写出这两面联合国旗的长和宽的比,并化成最简单的整数比。
课件出示例题的两面旗的图,
这两个比有什么关系呢?仔细观察,这两个比的前项,后项是怎么变化的,存在着怎样一个变化规律呢?
生独立解决,小组交流汇报方法。
15∶10
15 : 10=(15÷5):(10÷5)=3:2
想:5是15和10的什么数?为什么要除以5?
180 : 120=(15÷___):(10÷___)=3:2
想:除以什么呢?
这两个比的什么变了,什么没有变?
把下面的比化成最简单的整数比。
:2 1/6 :2/9
三、巩固应用,内化提高
1、看谁的眼睛看得准?(根据比的基本性质判断下面各题)
2、 把下面各比化成最简单的整数比。
应用这个性质可以把一个比化成最简单的整数比?
(1)。需要怎样做才能化成最简单的整数比?
(2)。这样做到底有什么根据?
3、归纳化简比的方法:
(1) 整数比
——比的前后项都除以它们的最大公约数→最简比。
(2) 小数比
——比的前后项都扩大相同的倍数→整数比→最简比。
(3) 分数比
——比的前后项都乘它们分母的最小公倍数→整数比→最简比。
四、课堂小结
通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?
五、课后延伸:
有一个两位数,十位上的数和个位上的数的比是2:3。十位上的数加上2,就和个位上的数相等。这个两位数是多少?
板书设计:
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。