首页 > 实用范文 > 其他范文 >

数学天才高斯的童年名人故事【精编4篇】

网友发表时间 25349

【引言】阿拉题库漂亮网友为您分享整理的“数学天才高斯的童年名人故事【精编4篇】”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!

数学家高斯的故事【第一篇】

高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,能够和阿基米德、牛顿、欧拉并列,有“数学王子”之称。

他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。

高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论之后由黎曼发展。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。

1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个之后被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间能够观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且到达的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法这天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星“智神星”方面也获得类似的成功。

由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

在古今中外的著名数学家当中,像高斯那样从小就具有高度数学才华的,恐怕极为少见。

高斯于1777年4月30日出生于德国一个农民家庭。他从小就酷爱数学,据说在他还不满三岁的时候,有一天,他观看父亲算帐,计算结束后,父亲念出了钱数准备写下时,身边传来细小的声音:“爸爸,算错了,总数就应是……”。父亲惊讶不止,复算结果,发现孩子的答案是正确的。高斯读小学的时候,有一次,老师出了一道难题,要他们从1加起,加2,加3,加4,……一向加到100,满以为这下准能把学生们难住。没想到高斯一会儿就算了出来。老师一看,答数是5050,一点不错,大吃一惊。高斯是这样算的:1与100、2与99、3与98……每一对的和都是101,而100以内这样的数共有50对,101×50=5050,他的这种计算方法,代数上称为等差级数求和公式。那时高斯才10岁。

高斯对数学的兴趣越来越浓,数学上的定理、公式和求证方法一个又一个地被他发现和证实。

11岁时,他发现了X+Yn的展开式。

17岁时,他发现了数论中的二次互反律。

1796年3月30日,年仅18岁的高斯,又有了堪称数学史上最惊人的发现,他用代数方法解决两千年来的几何难题,而且找到了只使用直尺和圆规作圆,内接正17边形的方法也称17边形直尺圆规画法。为了纪念他少年时的这一最重要的发现,高斯表示期望死后在他的墓碑上能刻上一个正17边形。1799年,高斯又证明了一个重要的定理:任何一元代数方程都有一个根,这一结果数学上称为“代数基本定理”,也被称做“高斯定理”。1801年,高斯出版了他的《算术论文集》。高斯在23岁的时候开始研究天文,并解决了测量星球椭圆轨道的方法,也称椭圆函数。

高斯所取得的成就,一方面来自天赋,一方面来自勤奋。他家里很穷,冬天,爸爸为了节省灯油,吃完晚饭就要他上床睡觉,高斯自己做了个油灯,在微弱的灯光下全神贯注地读书到深夜。15岁时,他就读了牛顿、欧拉、拉格朗日等著名数学家的数学著作,并熟练地掌握了微积分理论。高斯的成功,不是天上掉下来的,而是刻苦学习得来的。他把科学研究工作看得高于一切。妻子病重时,高斯正在钻研一个深奥的数学问题。仆人几次来叫他:“如果您不立刻过去,就不能见她最后一面了!”高斯却说:“叫她等一下,等到我过去”。直到他把手头的研究告一段落,这才勿勿跑去看望妻子。

高斯就是这样,天资聪明,更勤奋好学,最后成为著名的数学家,被誉为“数学王子”。1855年2月23日,高斯逝世,终年78岁。

伟大的数学天才高斯名人故事【第二篇】

德国著名大科学家高斯出生在一个贫穷的家庭。他还不会讲话,就自己学计算了,三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

高斯八岁时进入乡村小学读书。一天,数学老师出了这样一道题目: “你们今天替我算从1加2加3一直到100的和。”

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得很惊奇。以后,他常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后在数学上作了一些重要的研究了。

著名的数学家小欧拉的故事

大数学家欧拉是一个被学校除了名的小学生。 回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。

爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"

父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。

父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

数学家高斯的故事【第三篇】

卡尔·弗里德里希·高斯(1777—1855年)是德国19世纪著名的数学家、物理学家。高斯不到20岁时,在许多学科上就已取得了不小的成就。对于高斯接二连三的成功,邻居的几个小伙子很不服气,决心要为难他一下。

小伙子们聚到一起冥思苦想,终于想出了一道难题。他们用一根细棉线系上一块银币,然后再找来一个非常薄的玻璃瓶,把银币悬空垂放在瓶中,瓶口用瓶塞塞住,棉线的另一头也系在瓶塞上。准备好以后,他们小心翼翼地捧着瓶子,在大街上拦住高斯,用挑衅的口吻说道:“你一天到晚捧着书本,拿着放大镜东游西逛,一副蛮有学问的样子,你那么有本事,能不打破瓶子,不去掉瓶塞,把瓶中的棉线弄断吗?”

高斯对他们这种无聊的挑衅很生气,本不想理他们,可当他看了瓶子后,又觉得这道难题还的确有些意思,于是认真地想起解题的办法来。

繁华的大街商店林立,人流如织。在小伙子们为能难倒高斯而得意之时,大街上的围观者也越来越多。大家兴趣甚浓,都在想着法子,但无济于事,只好把希冀的目光投向高斯。高斯呢,眉头紧皱,一声不吭不受围观者嘈杂吵嚷的影响而冷静思考。

他无意地看了看明媚的阳光,又望了望那个瓶子,忽然高兴地叫道:“有办法了。”说着从口袋里拿出一面放大镜,对着瓶子里的棉线照着,一分钟、两分钟……人们好奇地睁大了眼,随着钱币“当”的一声掉落瓶底,大家发现棉线被烧断了。

高斯高声说道:“我是借了太阳的光!”

人们不由发出一阵欢呼声。

数学家高斯的故事【第四篇】

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。

他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。

”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3++n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

而后,在他上大学的时候,导师每天单独布置给他三道数学题。

像往常一样,前两道题目在两个小时内顺利地完成了。第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。高斯做着做着,感到越来越吃力。开始,他还想,也许导师见我每天的题目都做的很顺利,这次特意给我增加难度吧。但是,时间一分一秒地过去了,第三道题竟毫无进展。高斯绞尽脑汁,也想不出现有的数学知识对解开这道题有什么帮助。

困难激起了高斯的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去寻求答案。终于,当窗口露出一丝曙光时,他长舒了一口气,他终于做出了这道难题!

见到导师时,高斯感到有些内疚和自责。他对导师说:“您给我布置的第三道题我做了整整一个通宵,我辜负了您对我的栽培……”

导师接过他的作业一看,当即惊呆了。他用颤抖的声音对青年说:“这真是你自己做出来的?”高斯有些疑惑地看着激动不已的导师,回答道:“当然,但是,我很笨,竟然花了整整一个通宵才做出来。”导师请高斯坐下,取出圆规和直尺,在书桌上铺开纸,叫高斯当着他的面做一个正17边形。

高斯很快地做出了一个正17边形。导师激动地对高斯说:“你知不知道,你解开了一道有两千多年历史的数学悬案?阿基米德没有解出来,牛顿也没有解出来,你竟然一个晚上就解出来了!你真是天才!”多年以后,这个青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我不可能在一个晚上解决它。”

这个故事告诉我,问题有时并没有表面上那么困难。我们不能仅仅拘泥于课本上的知识,而应开拓我们的创造力。在常规知识的基础下去进行非常规的思考,有时会有更意想不到的结果。

相关推荐

热门文档

65 25349