小学数学知识点重点归纳总结(最新4篇)
【导言】此例“小学数学知识点重点归纳总结(最新4篇)”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
小学数学知识点总结【第一篇】
时分秒
1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。
2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。
3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。
5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。
6、公式(每两个相邻的时间单位之间的进率是60):
1时=60分
1分=60秒
7、常用的时间单位:时、分、秒、年、月、日、世纪等。
1世纪=100年
1年=12个月
分数的初步认识
1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、比较大小的方法:
①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、分数加减法:
①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。
②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。
5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。
测量
1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:
①进率是10:
1米=10分米
1分米=10厘米
1厘米=10毫米
②进率是100:
1米=100厘米
1分米=100毫米
③进率是1000:
1千米=1000米
1公里==1000米
5、当我们表示物体有多重时,通常要用到质量单位。在生活中,称比较轻的物品质量,可以用克做单位;称一般物品的质量,常用千克做单位;计量较重或大物品的质量,通常用吨做单位。
6、相邻两个质量单位的进率是1000。
1吨=1000千克
1千克=1000克
万以内的加法和减法
1、读数和写数:
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续两个0,都只读一个0。
2、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数位上的数,如果位上的数相同,就比较下一位,以此类推。
3、求一个数的近似数:看数的后面一位,如果是0~4就用四舍法,如果是5~9就用五入法。
4、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。
倍的认识
1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数。
3、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。
长方形和正方形
1、有4条直的边和4个角封闭的图形叫做四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等;
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2=长×2+宽×2
长方形的长=周长÷2—宽
长方形的宽=周长÷2—长
正方形的周长=边长×4
正方形的边长=周长÷4
多位数乘一位数
1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。
2、
①0和任何数相乘都得0;
②1和任何不是0的数相乘还得原来的数。
3、三位数乘一位数,积有可能是三位数,也有可能是四位数。
4、多位数乘一位数(进位)的笔算方法:
相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
5、一个因数中间有0的乘法:
①0和任何数相乘都得0;
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。
8、减法的验算方法:
①用被减数减去差,看结果是不是等于减数;
②用差加减数,看结果是不是等于被减数。
9、加法的验算方法:
①交换两个加数的位置再算一遍;
②用和减一个加数,看结果是不是等于另一个加数。
学习困难的原因
1、学习自觉性较差
初中生学习自觉性较差,缺少解题的积极性,解题时不注重步骤、过程。
2、学习意志薄弱
数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。
3、无兴趣学习或兴趣低
一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。
4、没有养成良好的数学学习习惯
有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。
所以同学们要注意自己是否存在以上问题,要想办法及时解决。
数学的概念
数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。
小学数学知识点总结【第二篇】
第一章————除法
1、用乘法口诀做除法,余数一定要比除数小;
2、应用题中,除数和余数的单位不一样;
商的单位是问题的单位,余数的单位和被除数的单位相同;
3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。
第二章————方向与位置(认识方向)
1、地图上的方向口诀:上北下南,左西右东;
辨认方向时要画方向标。
2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
“小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。
3、太阳早上从东边升起,西边落下;
指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()
4、当吹东南风时,红旗往()飘;
吹西北风时,红旗往()飘。
第三章————生活中的大数(认识10000以内的数)
1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。
2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。
3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。
4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。
5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;
末尾不管有几个“0”,都不读;
写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。
6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。
7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。
8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;
位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。
第四章————测量
1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;
2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;
3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
4、长度单位的加减法,米加米,分米加分米。就是把相同的单位进行加减。
第五章————加与减
1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。
2、计算时要注意:
(1)相同数位要对齐,从个位算起。
(2)计算加法时,哪一位相加满十,要向前一位“进一”。
(3)计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;
3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;
4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)
5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)
980-()=760(用980-760计算)
6、加法的验算方法:
(1)交换加数的位置,看和是否相同,
(2)用和减去其中一个加数,看是否等于另一个加数;
7、减法的验算方法:
(1)用被减数减去差,看结果是否等于减数,
(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。
第六章————认识角
1、每个角都是由1个顶点和2条边组成;
2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。
3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;
4、正方形有四个直角,四条边都相等;
长方形有四条边,四个直角,长方形的对边相等;
5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。
第七章————时、分、秒
1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;
2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;
3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;
4、时针走一大格是1小时,走一圈是12小时;
5、时、分、秒相邻单位的进率是60;1时=60分1分=60秒
6、比较时间,首先要观察,统一单位之后再比较大小。
7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;
第八章————统计
1、记录并学会计算,谁多,谁少。
小学数学知识点总结【第三篇】
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、求比一个数多(或少)几分之几的数是多少的解题方法
(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;
(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。
小学数学知识点总结【第四篇】
通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。
小小运动会
1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。
2、经历与他人交流各自算法的过程,体会算法多样化。
3、体会长方形、正方形、三角形和圆在生活中的普遍存在。
4、能利用图形设计美丽的图案。