首页 > 工作范文 > 总结报告 >

高考数学复习重点总结精选4篇

网友发表时间 899164

【导言】此例“高考数学复习重点总结精选4篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高考数学如何复习【第一篇】

数学思想方法,是数学知识在更高层次上的抽象和概括,它蕴涵于数学知识的发生、发展和应用的过程之中,是高考数学命题的凸显特点之一。“传授知识(掌握知识)”,“培养能力”,“方法渗透(即渗透数学思想)”是数学教学中由低到高的不同层次境界,“提高修养(即把数学文化及非智力因素的介入)”则是数学的最高境界。教师教学如此,学生学习如此,高考复习及高考更是如此。数学思想方法是数学之精髓。只有运用数学思想方法,才能把数学的知识与技能转化为分析问题和解决问题的能力,才能形成数学素质。

数学高考的重点和永恒的主题是“能力考查和测试。”教育部已明确宣称:高考命题将从“以知识立意命题”向“能力立意命题”转变。

怎么复习高考数学【第二篇】

怎么复习高考数学

怎么复习高考数学,高考时候数学怎么复习比较好,下面我们就来看看如何复习高考数学吧!

高考数学复习方法

第一轮复习,即基础复习阶段,这个阶段的复习是整个高考复习中最关键的环节,一般从8月份到第二年的三月份,历时8个月,这一阶段的复习效果直接影响整个高考的成败,因此同学们应该高度重视,在第一轮复习中我们必须严格按照《复习大纲》的要求,把《大纲》中所有的考点逐个进行突破,全面落实,形成完整的知识体系。

这就需要考生要对课本中的基本概念,基本公式,基本方法重点掌握,在复习中应淡化特殊技巧的训练,重视数学思想和方法的作用。

常用的数学思想方法有:

(1)函数思想方法:根据问题的特点构建函数将所要研究的问题,转化为对构建函数的性质如定义域、值域、单调性、奇偶性、周期性、最值、对称性、范围和图像的交点个数等的研究;

(2)方程思想方法:通过列方程(组)建立问题中的已知数和未知数的关系,通过解方程(组)实现化未知为已知,从而实现解决问题的目的;

(3)数形结合的思想:它可以把抽象的数学语言与直观图形相对应,使复杂问题简单化,抽象问题具体化,(4)分类讨论的思想:此思想方法在解答题中越来越体现出其重要地位,在解题中应明确分类原则:标准要统一,不重不漏。

同时考生在此阶段的复习过程中一定要重视教材的作用,我们有很大一部分考生不重视课本,甚至在高考这一年中从来没翻过课本,这是非常危险的。

因为高考试题有一部分都是从书上的例题和练习里引申变形而来的,对于我们基础比较薄弱的同学来讲,就更应该仔细阅读教材,认真琢磨书上的例题,体会其中包含的数学思想和数学方法。

这对于我们提高数学能力是非常有帮助的!

对于课外参考书的选择我认为选择一到两本适合自己的参考书,把里面的精髓学懂学会就足够了,不必弄的太多,弄的太多,反而对自己是一个很大的包袱。

第二轮复习,即专题强化复习阶段,一般从三月份到四月底,由于第一轮复习是以各知识板块为主,横向联系不多,因此在第二轮复习中应重点突出在知识网络交汇点处的复习,高考中一般有下面几个专题,即:函数与导函数专题;

平面向量与三角函数专题;

平面向量与解析几何专题;

空间向量与立体几何专题;

概率与统计专题;

数列与不等式专题等,通过这几个版块的复习目标在于提高学生解答高考解答题的能力。

此阶段学生不应沉迷于套卷演练,而应以典型例题为载体,以数学思想方法的灵活运用为线索,讲求解题策略,使自己在第一轮复习的基础上,数学素质得以明显提升。

值得注意的是在这个阶段当年的《考试大纲》已经出台了,考生应该仔细阅读《考试大纲》,针对前期的复习来查漏补缺,特别是对于《大纲》中与往年变动的地方我们一定高度重视,重点复习,争取在高考复习中面面俱到,不留死角。

第三轮复习,即考前冲刺复习阶段,在这个阶段我们应该大量做一些练习, 要做题先要选题,高考真题一定是最好的练习题!因此建议一定要好好做一下最十年以来的高考试卷,包括全国卷和地方卷,其次最好能找到近5年以来各区的统考试题,在做题的过程中来巩固前面复习过的考点。

同时最后的复习别忘了课本,特别是在考前应该再次翻开课本把里面公式和定理再看看,把典型的例题再做做,因为书上的例题毕竟比较简单,在考前做例题一是防止手生,便于高考正常发挥,一是有助于提高我们的自信心。

在高考复习的整个过程中,我们最好能建立一个积错本,就是要求我们在每一次练习中对于错误的地方一定要进行错误分析,一般错误包括三种:一种是计算失误,一种是审题失误,一种是思维起点错误。

对于第一种这是我们大多数同学经常出现的问题,在高考备考中我们一定要注意,每次考试和做题中一定要有始有终,千万不能眼高手低,我们很多同学在平时训练时一看题觉得自己会做就放弃演算过程,这是不好的学习习惯,只有每次在做题时能善始善终,才能提高我们运算的准确度,避免计算失误!

对于第二种审题失误,比如在有一年的高考中让你求的是极值,而我们很多同学求的是最值,画蛇添足,浪费了时间还要扣分,对于这种情况,我想在考试时一定要先把题仔细阅读一遍,甚至可以把试卷上关键字做上记号来提示你充分而准确地利用已知条件,这是一个不错的办法,同学们不妨可以试试!

对于第三种这是一个很关键的问题,在高考中解答题占了很大的比例,要克服这个问题,我们在平时学习中一定要注意积累一些典型例题的典型解法,比如在解析几何里的动点问题我们可以考虑消参法,数列中的构造法,函数中的转移法,等等,这都是很好的'方法,在备考中通过掌握这一种方法就可以很顺利做一类题目,触类旁通,举一反三!

高考数学复习重点总结【第三篇】

复习重点

重点1:覆盖二十二个章节

(一)必修模块:

重点是集合与函数,基本初等函数Ⅰ(指、对、幂函数),基本初等函数Ⅱ(三角函数),三角恒等变换,解三角形,平面向量,不等式(指的是数学Ⅵ中的相应内容),数列,直线与方程,圆与方程,空间几何体、点、直线、平面之间的关系(指的是数学Ⅱ中的相应内容),算法初步,统计(指的是数学Ⅲ中的统计内容),概率。(共15章)

(二)必选模块:

(理科5章,文科3章)

(文理)圆锥曲线与方程,导数及其应用,推理与证明。

(理科)空间向量与立体几何,计数原理与统计概率。

(三)选修专题:(共3个专题)

1.几何证明,重点复习相似三角形和圆的内容。

2.坐标系与参数方程:

极坐标系:掌握极坐标与直角坐标系的相互转化,以及简单曲线极坐标方程,如:直线与圆。对于圆的极坐标方程需掌握以下几种:①圆心在极点上;②圆心在极轴上且过极点;③圆心在极轴的反向延长线上且过极点;④圆心在极垂线上过极点;⑤圆心在极垂线的方向延长线上,过极点。

参数方程中需要掌握的:①直线的参数方程;②圆的参数方程;③椭圆的参数方程。

3.不等式的重点内容:①不等式的基本性质,②证明不等式的基本方法,③用数学归纳法证明不等式。

重点2:突出九个重要方面

函数、三角函数、平面向量、数列、不等式、圆锥曲线与方程、立体几何与空间向量、统计与概率、导数及其应用。

(一)解析几何:

1.直线的倾斜角、斜率及直线方程的基本形式;

2.圆的方程:圆的标准方程,一般方程,以及两者之间的转化,通过转化确定圆的半径、圆心;

3.椭圆、双曲线、抛物线的定义、标准方程及几何性质;

4.直线与直线、直线与圆的位置关系;

5.直线与椭圆、直线与抛物线的位置关系。

说明文理科的大纲要求不同,需根据大纲要求进行区分复习。

1.文理科对直线的倾斜角、斜率及直线方程的基本形式、圆的方程的要求掌握的程度是一致的;

2.理科:理解、掌握椭圆、抛物线的知识,对双曲线的知识内容达到了解即可;

3.文科:理解、掌握椭圆的知识,对抛物线、双曲线的知识内容达到了解即可;

4.直线与直线、直线与圆的位置关系、直线与椭圆、直线与抛物线的位置关系是历年综合题中经常出现的两类问题。解析几何是历年来把关题之一,也是学生感觉比较困难的题,所以在复习的时候,要帮助学生把基本知识点落实到位,建立解题思路与解题策略。

(二)空间几何体与空间向量:

三视图;空间线线、线面、面面平行及垂直关系的判定和性质;柱、锥、台、球的性质及表面积、体积的计算。(文理科要求相同)空间向量的坐标运算;空间角和距离的计算;(仅有理科考)

注意空间向量的坐标运算;空间角和距离的计算,在解答题出现空间角的计算、距离的求解,都需要运用空间向量坐标系进行求解,因此在复习中应重点凸显。而空间线线、线面、面面平行及垂直关系的判定和性质是解决上述问题的基本,是复习的重中之重。

(三)统计与概率:

核心考点是抽样方法,用样本估计总体(频率分布直方图、折线图、茎叶图、平均数、中位数、众数、方差和标准差);古典概型和几何概型;文理考察一致

五类事件的概率(等可能性事件的概率、互斥事件有一个发生的概率、对立事件的概率、相互独立事件同时发生的概率、次独立重复试验中某事件恰好发生次的概率及二项分布)只有理科考察;条件概率(理科);离散型随机变量的分布列、期望值与方差(理科)。

注意方差是初中就已涉及,也属文科的考察点。

(四)导数:

1.导数的概念及其几何意义,特别是几何意义,文理必须都要掌握。

2.导数公式以及求导法则,文理科的要求一致。这一方面,对文科的要求加大,增加了对指数、对数、三角函数、分式函数等求导的要求。无论文科还是理科,都必须熟练掌握公式,并且能够灵活运用。

3.复合函数的求导法则(理科仅掌握一次多项式求导即可)。

4.导数与函数的单调性和极值;导数与函数的最大值和最小值;导数与不等式的证明。

5.导数与函数的零点;考察最多的5个方面。

6.定积分与微积分基本定理。理科考察,文科不作要求。

[高考数学复习重点归纳总结]

高考数学如何复习【第四篇】

高考的总体思路是“稳中求进”和“注意考查能力”。说“稳”,就是说许多“常规题”是历年“不变”的,说“进”,就是每年均会推出一两个新题型,如前些年的存款利率问题,的经济发展问题,的汽车增量控制问题,都是与时代脉博相适应的新题型。20的“剪拼题”更是令人耳目一新,引起了数学界的普遍关注。因此,在复习时,一方面要做到保证“常规题”的“熟悉感”,另一方面,又要做好新题型的设想与训练。

相关推荐

热门文档

35 899164