首页 > 工作范文 > 总结报告 >

数学参数方程知识点总结

网友发表时间 1395897

【导言】此例“数学参数方程知识点总结”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

数学参数方程知识点总结

参数方程定义

一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)

并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

参数方程

圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数

椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数

双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数

抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数

直线的参数方程 x=x+tcosa y=y+tsina,x,y和a表示直线经过(x,y),且倾斜角为a,t为参数

参数方程的应用

一般在平面直角坐标系中,如果曲线上任意一点的坐标x, y都是某个变数t的函数:x=f(t),y=g(t), 并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数。

圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数

椭圆的参数方程 x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

直线的参数方程 x=x+tcosa y=y+tsina , x, y和a表示直线经过(x,y),且倾斜角为a,t为参数。

相关推荐

热门文档

35 1395897