首页 > 工作范文 > 总结报告 >

初中数学一次函数知识点总结精编5篇

网友发表时间 852802

【导言】此例“初中数学一次函数知识点总结精编5篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初中数学一次函数常用公式1

1、求函数图像的k值:(y1-y2)/(x1-x2)

2、求与x轴平行线段的中点:(x1+x2)/2

3、求与y轴平行线段的中点:(y1+y2)/2

4、求任意线段的长:√[(x1-x2)^2+(y1-y2)^2 ]

5、求两个一次函数式图像交点坐标:解两函数式

两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

6、求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]

7、求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2)(若分母为0,则分子为0)

x y

+,+(正,正)在第一象限

-,+(负,正)在第二象限

-,-(负,负)在第三象限

+,-(正,负)在第四象限

8、若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2

9、如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1

10、

y=k(x-n)+b就是直线向右平移n个单位

y=k(x+n)+b就是直线向左平移n个单位

口诀:右减左加(对于y=kx+b来说,只改变n)

y=kx+b+n就是向上平移n个单位

y=kx+b-n就是向下平移n个单位

口诀:上加下减(对于y=kx+b来说,只改变b)

11、直线y=kx+b与x轴的交点:(-b/k,0),与y轴的交点:(0,b)

读书破万卷,下笔如有神。山草香为大家分享的5篇初中数学一次函数知识点总结就到这里了,希望在一次函数的写作方面给予您相应的帮助。

初中数学一次函数常用公式2

设△ABC,∠C=90°(初中是锐角三角函数)AC=b,BC=a,AB=c,正割函数:sec∠A=c/b(斜边:邻边),y=secx。

在y=secx中,以x的任一使secx有意义的值与它对应的y值作为(x,y)。在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线。

性质

sec在三角函数中表示正割

直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用 sec(角)表示 。

正割与余弦互为倒数,余割与正弦互为倒数。即:secθ=1/cosθ

在y=secθ中,以x的任一使secθ有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线。

y=secθ的性质:

(1)定义域,θ不能取90度,270度,-90度,-270度等值; 即 θ ≠kπ+π/2 或 θ≠kπ-π/2 (k∈Z)

(2)值域,|secθ|≥1.即secθ≥1或secθ≤-1;

(3)y=secθ是偶函数,即sec(-θ)=secθ.图像对称于y轴;

(4)y=secθ是周期函数。周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.

高中数学一次函数公式总结3

一、定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k≠0)的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k≠0)(k不等于0,且k,b为常数)

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b).

当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)

为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;

当k不同,且b相等,图象相交于Y轴;

当k互为负倒数时,两直线垂直;

6.平移时:上加下减在末尾,左加右减在中间(k不等于0,且k,b为常数)

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b).

当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)

为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)

形、取、象、交、减。

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;

当k不同,且b相等,图象相交于Y轴;

当k互为负倒数时,两直线垂直;

6.平移时:上加下减在末尾,左加右减在中间

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤:

(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表,

(2)描点:一般取两个点,根据“两点确定一条直线”的道理;

(3)连线:可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-与(-b/k,0),0与b)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图象都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

,b与函数图象所在象限:

y=kx时(即b等于0,y与x成正比,此时的图象是一条经过原点的直线)

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

y=kx+b(k,b为常数,k≠0)时:

当 k>0,b>0, 这时此函数的图象经过一,二,三象限;

当 k>0,b<0, 这时此函数的图象经过一,三,四象限;

当 k<0,b>0, 这时此函数的图象经过一,二,四象限;

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

当b>0时,直线必通过一、二象限;

当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图象。

这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。

4、特殊位置关系

当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等。

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1.[1]

5.直线y=kx+b的图象和性质与k、b的关系如下表所示:

k>0,b>0:经过第一、二、三象限

k>0,b<0:经过第一、三、四象限

k>0,b=0:经过第一、三象限(经过原点)

结论:k>0时,图象从左到右上升,y随x的增大而增大。

k<0b>0:经过第一、二、四象限

k<0,b<0:经过第二、三、四象限

k<0,b=0:经过第二、四象限(经过原点)

结论:k<0时,图象从左到右下降,y随x的增大而减小。

6.将函数向上平移n格,函数解析式为y=kx+b+n,将函数向下平移n格,函数解析式为y=kx+b-n,将函数向左平移n格,函数解析式为y=k(x+n)+b,将函数向右平移n格,函数解析式为y=k(x-n)+b.

高中数学学习方法汇总4

1、不少同学都会有个相同的错误,就是在老师讲课的时候,拼命的做笔记,做计算。这都是徒劳或者是低效的。最有效的是抛开一切,认真理解老师的解题思路,千万不要纠结某个计算结果或者是某个环节,你所要理解的是,一道题如何一环环的解开和每一个环节的原理。

2、要学好高中数学,最主要的是自己做题,千万不可依赖老师或者同学,不提倡题海战术,因为做一道新题要比你做一百道同样的题强很多。每做完一道题,要总结出解题的思路方法。

3、整个高中最难的一块就是函数,而函数又恰巧学在前面,导致很多学生受挫。函数一块的话,可以先了解一下函数图象的一块,借助图象来解函数问题,非常方便。

4、看书能明白,听老师讲题觉得很简单,但一到自己做,就不会了。这是一个通病。主要原因不是因为高中的数学有多难,而是思维没有转变过来。初中的题一般比较简单,所以死记解题方法都可以,但是高中数学就不行了。

初中数学一次函数常用公式5

(1)、定义域:{x|x≠kπ,k∈Z}

(2)、值域:实数集R

(3)、奇偶性:奇函数,

可由诱导公式cot(-x)=-cotx推出

图像关于(kπ/2,0)k∈z对称,实际上所有的零点和使cotx无意义的点都是它的对称中心

(4)、周期性

是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;

(5)、单调性

在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。

(6)、对称性

中心对称:关于点(kπ/2,0)k∈Z 中心对称

相关推荐

热门文档

35 852802