首页 > 工作范文 > 总结报告 >

高中数学等比数列知识点总结精编4篇

网友发表时间 576126

【前言导读】此篇优秀范文“高中数学等比数列知识点总结精编4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

高中数学等比数列知识点总结【第一篇】

紧扣新课程标准,在有限的时间吃透教材,分组讨论定稿,每个人根据本班学生情况说课、主讲、自评;积极利用各种教学资源,创造性地使用教材公开轮讲,反复听评,从研、讲、听、评中推敲完善出精彩的案例。实践表明,这种备课方式,既照顾到各班实际情况,又有利于教师之间的优势互补,从而整体提高备课水平。

三。课堂教学,交往互动、共同发展

为保证新课程标准的落实,我们把课堂教学营造成学生主动探索的学习环境,学生在获得知识和技能的同时,在过程方法、情感态度价值观等方面都得到了充分发展,把数学教学变成了师生之间、学生之间交往互动,共同发展的过程。

在平时的教学实践中,我们还注意记下学生学习中的闪光点或困惑,记下自已的所感、所思、所得,积累宝贵的第一手资料。教学经验的积累和教训的吸取,对今后改进课堂教学和提高教学水平十分有用。

课前准备不流于形式,变成一种实实在在的研究,教师的集体智慧得到充分发挥,课后的反思为以后的教学积累了许多有益的经验与启示。 “学生是教学活动的主体,教师成为教学活动的组织者、指导者、参与者。”这一观念的确立,满堂灌的教法就没有了市场。无论是问题的提出,还是已有数据处理、数学结论的获得等环节,都体现学生自主探索研究。突出过程性,注重学习结果更注重学习过程以及学生在学习过程中的感受和体验。学生的智慧、能力、情感、信念水乳交融,心灵受到震撼,心理得到满足,学生成了学习的主人,学习成了他们的需求,学中有发现,学中有乐趣,学中有收获。实践证明:营造情境,培养学生的主动探究精神是探究性学习的新空间、新途径。

四。加快新教师的培养,做学者型教师

通过新老教师结对子等活动,数学组新教师在两位老教师的悉心指导下,通过自身努力,半年时间内在课堂教学的各个方面都取得了长足进步,现在已经能够胜任正常的教育教学工作。新教师的汇报课得到了上级主管领导及校领导的高度评价和充分肯定,多位教师在校内外的优质课比赛中取得优异成绩。每位教师在做好正常教育教学工作的同时,通过多种途径不断学习提高,争做研究性、学者型教师。

第一,全体教师参加宿迁市教育局新课程及研究性学习培训。及时了解高中新课程改革的最新动态,认真研究新课程标准及新教材,立体建构起新课程改革下的数学教学框架,并在以后的教学工作中收到了良好效果。

第二,全体新教师利用节假日参加了由甘谷县教育局组织的教师继续教育培训活动,认真听专家讲座,积极向其他教师学习宝贵经验,提高了自身水平和能力。

第三,走出去引进来。在学校的统一安排下,多人次到甘谷县一中,二中、天水市,兰州市等地听公开课、专家报告和讲座;及时在集体备课活动中与同组成员分享讨论共同提高。

一份耕耘,一份收获,教学工作苦乐相伴。我们将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把教学工作搞得更出色。

高中数学等比数列知识点总结【第二篇】

本学期我担任高一(4)班的数学教学工作,一直本着实事求是、脚踏实地的工作原则,圆满完成本学期的教学任务,并在思想水平、业务水平等方面有很大的进步,现就一学期的工作总结如下:

一、思想政治方面

一年来,我积极参加政治学习,政治学习笔记整理的认真细致。我时刻用教师的职业道德要求来约束自己,爱岗敬业,严于律己,服从组织分配,对工作尽职尽责,任劳任怨,注重师德修养。我始终认为作为一名教师应把“师德”放在一个极其重要的位置上,因为这是教师的立身之本。本人奉守“学高为师,身正为范”的从业准则,从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。热爱学生,坚持“德育为首,育人为本”的原则,不仅在课堂上坚持德育渗透,而且注重从思想上、生活上、学习上全面关心学生,在学生评教中深受学生的敬重与欢迎。能严格遵守校级校规,严格按照作息上下班,团结同志,能与同事和睦相处。

二、教育教学方面

教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。

(一)注意培养学生良好的学习习惯和学习方法

学生在从初中到高中的过渡阶段,往往会有些不能适应新的学习环境。例如以往的学习方法不能适应高中的学习,不良的学习习惯和学习态度等一些问题困扰和制约着学生的学习。为了解决这些问题,我从下面几方面下功夫:

1、改变学生学习数学的一些思想观念,树立学好数学的信心

在开学初,我就给他们指出高中数学学习较初中的要难度大,内容多,知识面广,大家其实处在同一起跑线上,谁先跑,谁跑得有力,谁就会成功。对较差的学生,给予多的关心和指导,并帮助他们树立信心;对骄傲的学生批评教育,让他们不要放松学习。

2、改变学生不良的学习习惯,建立良好的学习方法和学习态度

开始,有些学生有不好的学习习惯,例如作业字迹潦草,不写解答过程;不喜欢课前预习和课后复习;不会总结消化知识;对学习马虎大意等。为了改变学生不良的学习习惯,我要求统一作业格式,表扬优秀作业,指导他们预习和复习,强调总结的重要性,让学生写章节小结,做错题档案,总结做题规律等。对做得好的同学全班表扬并推广,不做或做得差的同学要批评。通过努力,大多数同学能很快接受,慢慢的建立起好的学习方法和认真的学习态度。

(二)日常数学教学的方法及对策

1、备课

本学期我根据教材内容及学生的实际情况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先考虑到,认真写好教案。高一虽然已经教过了几轮,但是每一年的感觉都不一样。从不敢因为教过而有所懈怠。我还是像一位新老师一样认真阅读新课标,钻研新教材,熟悉教材内容,查阅教学资料,适当增减教学内容,认真细致的备好每一节课,真正做到重点明确,难点分解。遇到难以解决的问题,就向老教师讨教或在备课组内讨论。其次,深入了解学生,根据学生的知识水平和接受能力设计教案,每一课都做到“有备而去”。 并积极听老教师的课,取其所长,并不断归纳总结经验教训。

2、课堂教学

针对#高中学生特点,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。

课堂上我特别注意调动学生的积极性,加强师生交流,充分体现学生在学习过程中的主动性,让学生学得轻松,学得愉快。在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分考虑每一个层次的学生学习需求和接受能力,让各个层次的学生都得到提高。同时更新理念,坚持采用多媒体辅助教学,深受学生欢迎。每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作好总结,写好教学后记。

(三)课后辅导

课后在给学生解难答疑时耐心细致,使学生在接受新知识的同时,不断地对以往的知识进行复习巩固。在“导师制”活动开展后,我负责一年四班x同学的数学学习,除了在课堂上关注她,课后也及时进行交流

等比数列知识点总结【第三篇】

1、等比数列的定义:

2、通项公式:

a n =a 1q n -1=a 1n q =A B n (a 1q ≠0, A B ≠0),首项:a 1;公比:q

a n q =n a m a n =q (q ≠0)(n ≥2, 且n ∈N *),q 称为公比 a n -1推广:a n =a m q n -m q n -m =

3、等比中项:

(1)如果a , A , b 成等比数列,那么A 叫做a 与b 的等差中项,即:A 2=

ab 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(

(2)数列{a n }是等比数列a n 2=a n -1a n +1

4、等比数列的前n 项和S n 公式:

(1)当q =1时,S n =na 1

(2)当q ≠1时,S n =

=a 1(1-q n )1-q =a 1-a n q 1-q a 1a -1q n =A -A B n =A B n -A (A , B , A , B 为常数) 1-q 1-q

5、等比数列的判定方法:

(1)用定义:对任意的n ,都有a n +1=qa n 或a n +1=q (q 为常数,a n ≠0) {a n }为等比数列 a n

(2)等比中项:a n 2=a n +1a n -1(a n +1a n -1≠0) {a n }为等比数列

(3)通项公式:a n =A B n (A B ≠0){a n }为等比数列

6、等比数列的证明方法: a 依据定义:若n =q (q ≠0)(n ≥2, 且n ∈N *)或a n +1=qa n {a n }为等比数列 a n -1

7、等比数列的性质:

(2)对任何m , n ∈N *,在等比数列{a n }中,有a n =a m q n -m 。

(3)若m +n =s +t (m , n , s , t ∈N *) ,则a n a m =a s a t 。特别的,当m +n =2k 时,得a n a m =a k 2 注:a 1a n =a 2a n -1=a 3a n -2

a k (4)数列{a n },{b n }为等比数列,则数列,{k a n },{a n k },{k a n b n },{n (k 为非零b n a n

常数)均为等比数列。

(5)数列{a n }为等比数列,每隔k (k ∈N *) 项取出一项(a m , a m +k , a m +2k , a m +3k , ) 仍为等比数列

(6)如果{a n }是各项均为正数的等比数列,则数列{loga a n }是等差数列

(7)若{a n }为等比数列,则数列S n ,S 2n -S n ,S 3n -S 2n , ,成等比数列

(8)若{a n }为等比数列,则数列a 1a 2a n ,a n +1a n +2a 2n ,a 2n +1a 2n +2a 3n 成等比数列

a 1>0,则{a n }为递增数列{(9)①当q >1时,a 1<0,则{a n }为递减数列

a 1>0,则{a n }为递减数列{②当0

③当q =1时,该数列为常数列(此时数列也为等差数列);

④当q<0时, 该数列为摆动数列。

(10)在等比数列{a n }中,当项数为2n (n ∈N *) 时,S 奇1= S 偶q

二、 考点分析

考点一:等比数列定义的应用

141、数列{a n }满足a n =-a n -1(n ≥2),a 1=,则a 4=_________. 33

2、在数列{a n }中,若a 1=1,a n +1=2a n +1(n ≥1),则该数列的通项a n =______________. 考点二:等比中项的应用

1、已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=( )

A .-4 B.-6 C.-8 D.-10

2、若a 、b 、c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴交点的。个数为( )

A .0 B .1 D .不确定

203、已知数列{a n }为等比数列,a 3=2,a 2+a 4=,求{a n }的通项公式。 3

考点三:等比数列及其前n 项和的基本运算

2911、若公比为的等比数列的首项为,末项为,则这个数列的项数是( ) 383

A .3

2、已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =_________________.

3、若{a n }为等比数列,且2a 4=a 6-a 5,则公比q =________.

4、设a 1,a 2,a 3,a 4成等比数列,其公比为2,则

A .2a 1+a 2的值为( ) 2a 3+a 4111 B . C. 428

高中数学等比数列知识点总结【第四篇】

一、集合有关概念

1. 集合的含义

2. 集合的中元素的三个特性:

(1) 元素的确定性如:世界上最高的山

(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+整数集Z 有理数集Q 实数集R

1) 列举法:{a,b,c}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) Venn图:

4、集合的分类:

(1) 有限集含有有限个元素的集合

(2) 无限集含有无限个元素的集合

(3) 空集 不含任何元素的集合 例:{x|x=-5}

二、集合间的基本关系 1.“包含”关系—子集

注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

B或BA 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x-1=0} B={-1,1}“元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA

②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

nn-1有n个元素的集合,含有2个子集,2个真子集

例题:

下列四组对象,能构成集合的是 A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数

2.集合{a,b,c }的真子集共有个

3.若集合M={y|y=x-2x+1,xR},N={x|x≥0},则M与N的关系是 .

4.设集合A=xx2,B=a,若AB,则a的取值范围是

名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,

两种实验都做错得有4人,则这两种实验都做对的有人。

6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.

7.已知集合A={x| x+2x-8=0}, B={x| x-5x+6=0}, C={x| x-mx+m-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

相关推荐

热门文档

35 576126