人教版高中数学教案(最新10篇)
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“人教版高中数学教案(最新10篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
人教版高中数学教案【第一篇】
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
教学重点.难点。
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标。
1.知识与技能。
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法。
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观。
使学生感受到学习集合的必要性,增强学习的积极性.
1.教学方法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。
2.教学手段:在教学中使用投影仪来辅助教学。
(一)创设情景,揭示课题。
1.教师首先提出问题:
(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价。
2.活动:
(1)列举生活中的集合的例子;
(2)分析、概括各实例的共同特征。
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫。
(二)研探新知,建构概念。
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母a,b,c,d表示,元素常用小写字母a,b,c,d表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神。
(三)质疑答辩,发展思维。
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性、互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流.让学生充分发表自己的建解。
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价。
4.教师提出问题,让学生思考。
b是(1)如果用a表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。
如果a是集合a的元素,就说a属于集合a。
如果a不是集合a的元素,就说a不属于集合a。
(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正。
教师投影学习。
(1)用自然语言描述集合{1,3,5,7,9};
(2)用例举法表示集合a。
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象。
(五)归纳小结,布置作业。
1.小结:在师生互动中,让学生了解或体会下例问题:
本节课我们学习了哪些知识内容?
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:
1.课后书面作业:第13页习题组第4题。
人教版高中数学教案【第二篇】
难点是解组合的应用题.。
(一)导入新课。
(教师活动)提出下列思考问题,打出字幕.。
[字幕]一条铁路线上有6个火车站。
(1)需准备多少种不同的普通客车票?
(学生活动)讨论并回答。
答案提示:
(1)排列;
(2)组合。
[评述]问题。
(二)新课讲授。
[提出问题创设情境]。
(教师活动)指导学生带着问题阅读课文。
[字幕]。
1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.。
(教师活动)对照课文,逐一评析.。
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境。
归纳概括建立新知。
(教师活动)承接上述问题的回答,展示下面知识.。
(学生活动)倾听、思索、记录。
(教师活动)提出思考问题。
[投影]与的关系如何?
(师生活动)共同探讨.求从个不同元素中取出个元素的排列数,可分为以下两步:
第1步,先求出从这个不同元素中取出个元素的组合数为;
第2步,求每一个组合中个元素的全排列数为。
根据分步计数原理,得到。
[字幕]公式1:
公式2:
(学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票。
(三)小结。
(师生活动)共同小结。
本节主要内容有。
1.组合概念。
2.组合数计算的两个公式。
(四)布置作业。
1.课本作业:习题103第1(1)、(4),3题。
3.研究性题:
(五)课后点评。
3.能组成(注意不能用点为顶点)个四边形,个三角形.。
探究活动。
解设四人分别为甲、乙、丙、丁,可从多种角度来解。
人教版高中数学教案【第三篇】
掌握三角函数的单调性以及三角函数值的取值范围。
过程与方法
经历三角函数的单调性的探索过程,提升逻辑推理能力。
情感态度价值观
在猜想计算的过程中,提高学习数学的兴趣。
教学重点
三角函数的单调性以及三角函数值的取值范围。
教学难点
探究三角函数的单调性以及三角函数值的取值范围过程。
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
人教版高中数学教案【第四篇】
3.进一步提高问题探究意识、知识应用意识和同伴合作意识。
问题的提出与解决。
如何进行问题的探究。
启发探究式。
研究方向提示:
1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;
2.研究所给数列的项之间的关系;
3.研究所给数列的子数列;
4.研究所给数列能构造的新数列;
5.数列是一种特殊的函数,可以从函数性质角度来进行研究;
6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。
针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。
课堂小结:
1.研究一个数列可以从哪些方面提出问题并进行研究?
2.你最喜欢哪位同学的研究?为什么?
开展研究性学习,培养问题解决能力。
一、对“研究性学习”和“问题解决”的认识研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。
“问题解决”(problemsolving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。
问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。
二、“问题解决”课堂教学模式的建构与实践以研究性学习活动为载体,以培养问题解决能力为核心的'课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。
(一)关于“问题解决”课堂教学模式。
通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。
(二)数学学科中的问题解决能力的培养目标。
数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。
(三)“问题解决”课堂教学模式的教学流程。
(四)“问题解决”课堂教学评价标准。
1.教学目标的确定;
2.教学方法的选择;
3.问题的选择;
4.师生主体意识的体现;
5.教学策略的运用。
(五)了解学生的数学问题解决能力的途径。
(六)开展研究性学习活动对教师的能力要求。
人教版高中数学教案【第五篇】
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。
1、教学重点。
理解并掌握诱导公式、
2、教学难点。
正确运用诱导公式,求三角函数值,化简三角函数式、
1、教法。
2、学法。
3、预期效果。
(一)创设情景。
1、复习锐角300,450,600的三角函数值;。
2、复习任意角的三角函数定义;。
3、问题:由,你能否知道sin2100的值吗?引如新课、
人教版高中数学教案【第六篇】
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
渐近线方程是,离心率,若点是双曲线上的点,则,。
2、又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3、经过两点的双曲线的标准方程是。
4、双曲线的渐近线方程是,则该双曲线的离心率等于。
5、与双曲线有公共的渐近线,且经过点的双曲线的方程为
1、双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。
2、已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。
3、设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。
1、双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。
2、与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。
3、若双曲线上一点到它的右焦点的距离是,则点到轴的距离是
4、过双曲线的左焦点的直线交双曲线于两点,若。则这样的'直线一共有条。
1、已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2、已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。
3、双曲线的焦距为
4、已知双曲线的一个顶点到它的一条渐近线的距离为,则
5、设是等腰三角形,,则以为焦点且过点的双曲线的离心率为。
人教版高中数学教案【第七篇】
三角函数的诱导公式是普通高中课程标准实验教科书(人教b版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。
通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.
以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。
借助单位圆探究诱导公式。
能正确运用诱导公式将任意角的三角函数化为锐角三角函数。
诱导公式(三)的推导及应用。
诱导公式的应用。
多媒体。
1.诱导公式(一)(二)。
2.角(终边在一条直线上)。
3.思考:下列一组角有什么特征?()能否用式子来表示?
已知由。
可知。
而(课件演示,学生发现)。
所以。
于是可得:(三)。
设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。
由公式(一)(三)可以看出,角角相等。即:
公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。
设计意图:结合学过的公式(一)(二),发现特点,总结公式。
1.练习。
(1)。
设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。
(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)。
例3:求下列各三角函数值:
(1)。
(2)。
(3)。
(4)。
设计意图:利用公式解决问题。
练习:
(1)。
(2)(学生板演,师生点评)。
设计意图:观察公式特点,选择公式解决问题。
四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。
很荣幸大家来听我的课,通过这课,我学习到如下的东西:
1.要认真的研读新课标,对教学的目标,重难点把握要到位。
2.注意板书设计,注重细节的东西,语速需要改正。
3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作。
5.上课的生动化,形象化需要加强。
1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的`,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。
2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。
3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。
4.评议者:引导学生通过网络进行探究。
建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。
(1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好。
(2)这样子的教学可以提高上课效率,让学生更多的时间思考。
(4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来。
(5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少。
(6)让学生多探究,课堂会更热闹。
(7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习。
(8)教学模式相对简单重复。
(9)思路较为清晰,规范化的推理。
人教版高中数学教案【第八篇】
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
难点:识别三视图所表示的空间几何体。
观察、动手实践、讨论、类比。
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本p15练习1、2;p20习题[a组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本p20习题[a组]1。
人教版高中数学教案【第九篇】
理解数列的概念,掌握数列的运用。
理解数列的概念,掌握数列的运用。
知识点精讲。
1、数列:按照一定次序排列的一列数(与顺序有关)。
2、通项公式:数列的.第n项an与n之间的函数关系用一个公式来表示an=f(n)。
(通项公式不)。
3、数列的表示:。
(1)列举法:如1,3,5,7,9……;。
(2)图解法:由(n,an)点构成;。
(3)解析法:用通项公式表示,如an=2n+1。
5、任意数列{an}的前n项和的性质。
人教版高中数学教案【第十篇】
2、能识别和理解简单的框图的功能。
3。、能运用三种基本逻辑结构设计流程图以解决简单的问题。
1。、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。
2。、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。
一、问题情境。
1、情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为x。
其中(单位:)为行李的重量.。
试给出计算费用(单位:元)的一个算法,并画出流程图。
二、学生活动。
学生讨论,教师引导学生进行表达。
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.。
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1—2—6.。
在上述计费过程中,第二步进行了判断.。
1、选择结构的概念:
先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。
3、思考:教材第7页图所示的算法中,哪一步进行了判断?