首页 > 工作范文 > 工作计划 >

初一下册的数学教学计划精编4篇

网友发表时间 326703

【导读】阿拉题库网友为您分享整理的“初一下册的数学教学计划精编4篇”工作范文资料,供您参考学习,希望这篇工作文档对您有所帮助,喜欢就下载分享给朋友吧!

七年级数学下册教学设计1

教学目标

会进行单项式与多项式相乘的运算。

理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想。

在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。

使学生获得成就感,培养学习数学的兴趣。

重点难点

重点

单项式与多项式相乘的运算法则及其运用

难点

灵活地运用单项式与多项式相乘的运算解决数学问题。

教学过程

一、复习导入

1. 计算单项式乘单项式时,要把系数和同底数幂分别相乘,这样做的依据是什么?体现了怎样的数学思想?

2. 你能用字母表示乘法的分配律吗?

3. 类似的,对于单项式乘以多项式,比如

你能将它转化成已经学过的单项式乘单项式来计算吗?

二、新课讲解

探究新知

1.怎样计算 ?

学生在已有的知识经验基础上,想到运用乘法分配律将问题进行转化:

教师指出,可以把单项式看成一个数,把多项式看成3个数的和。

2. 下面的运算该如何转化成单项式乘单项式呢?请你试一试:

(1) ;(2)

利用变式,进一步强化学生对算理的理解。学生互相交流后,教师板书,强调转化的过程中要把一个项(包括项前的符号)整个的看成一个数,这样能避免符号错误。

3. 你能根据上面的运算,用文字叙述一下单项式乘多项式的方法吗?

引导学生用自己的话叙述上面的运算过程,然后师生共同总结:

单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。

通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。

三、典例剖析

例1. 计算:

(1) ; (2)

学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:

单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。

例2 求 的值,其中

提问学生,可以直接把 带进式子运算吗?如果觉得运算很繁琐,你有其它的建议吗?

引导学生观察思考后,让学生尝试解答,之后教师板书示范,共同总结出方法:

计算代数式的值的一般步骤是先化简,再求值。

四、课堂练习

基础练习:

1.计算:

(1) ; (2) ;

(3) ; (4)

2.先化简,再求值:

,其中

学生练习,教师巡视,注意发现学生的错误,组织学生对错误进行分析,切实夯实基本运算能力。

提高练习

3.已知 ,求代数式 的值。

4.已知 ,求 的值。

让学生自己分析,相互讨论,丰富解决数学问题的经验。

五、小结

师生共同回顾单项式乘以多项式的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

P41 第7题

七年级数学下册教学设计2

教学目标:

1.会用代入法解二元一次方程组。

2.初步体会解二元一次方程组的基本思想――“消元”。

3.通过研究解决问题的方法,培养学生合作交流意识与探究精神。

重点:

用代入消元法解二元一次方程组。

难点:

探索如何用代入法将“二元”转化为“一元”的消元过程。

教学过程:

复习提问:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?

解:设这个队胜x场,根据题意得

解得

x=18

则 20-x=2

答:这个队胜18场,负2场。

新课:

在上述问题中,我们可以设出两个未知数,列出二元一次方程组

设胜的场数是x,负的场数是y,

x+y=20

2x+y=38

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=20说明y=20-x,将第2个方程

2x+y=38的y换为20-x,这个方程就化为一元一次方程。

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

归纳:

上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

例1 把下列方程写成用含x的式子表示y的形式:

(1)2x-y=3 (2)3x+y-1=0

例2 用代入法解方程组

x-y=3 ①

3x-8y=14 ②

例3 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5。某厂每天生产这种消毒液22。5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?

用代入消元法解二元一次方程组的步骤:

(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。

(2)把(1)中所得的方程代入另一个方程,消去一个未知数。

(3)解所得到的一元一次方程,求得一个未知数的值。

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。

作业:

教科书第98页第3题

第4题

七年级数学下册教案3

教学目标:

知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

能力目标:进一步培养学生分析、归纳和探索能力。

情感目标:培养学生数形结合的思想。

教学重难点:公式的应用及推广。

教学过程:

一、复习提问:

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:

沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,

这样裁开后才能重新拼成一个矩形。

(3)比较(1)(2)的结果,你能验证平方差公式吗?

学生讨论,自己得出结果

2.(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的。a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.

3.判断正误:

(1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)

二、新课:

运用平方差公式计算:

(1)102×98;(2)(y+2)(y2)(y2+4).

填空:

(1)a24=(a+2)();(2)25(阿拉文库☆)x2=(5x)();(3)m2n2=()();

思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

七年级数学下学期教学工作总结4

一直以来,我们七年级数学备课组在学校和数学学科组的领导下,全组教师精诚团结,工作努力认真坚持教育、教学理论的学习,积极参加学校的教研活动,较好地完成了初一级的数学教学任务。现将一学期的工作简单回顾如下:

1.定期进行备课组活动。

充分利用每周一次的备课组教研活动,整合备课组教师的智慧进行集体备课,统一教学进度,交流教学中所遇到的问题与困惑,并探讨解决方案,制定下周的教学策略。

2.认真钻研教材

备课组的教师能认真学习研究新课程标准,特别注意明确课程标准中对本学期所涉及知识点的定位与教学要求,对本学期的教学内容有更深层次的理解和系统性的把握。

3.形成随时教研的氛围。

我们每天都要抽出一定的时间碰头交流自己的教学进度,本节课的教学目标、重难点;每个人上完课后都会找机会谈谈自己这节课是否达到了预期效果;学生们有没有什么特别好或不好的反应;出现了哪些新问题,是怎么解决的,大家再商量着还有没有更好的讲解方式,以便我们能吸取经验,更好地把握教材,我们同组教师能坚持经常性的互相交流,互相学习与督促,提高了教学的有效性。

4.辅导数学成绩落后学生。

我们充分利用辅导课和课余时间对学生所学的内容进行辅导,答疑解惑,我们还利用课间、中午的休息时间和下午放学后的时间为学生辅导解难,尤其对学困生付出了更多的艰辛。我们几位数学数学老师长期如一日的付出,这种高尚的师德和严谨的治学态度赢得了得到了年级组所有老师的好评和学生的尊敬。

相关推荐

热门文档

40 326703