首页 > 工作范文 > 范文大全 >

分数的意义教学设计 三年级认识分数教学设计14篇精编

网友发表时间 958415

【导读预览】此篇优秀范文“分数的意义教学设计 三年级认识分数教学设计14篇精编”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

分数的意义教学设计 三年级认识分数教学设计【第一篇】

教学目标:

1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。

2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。

3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。

教学重点:

掌握百分数和分数、小数互化的方法。

教学难点:

正确、熟练地进行百分数和分数、小数的互化。

教学过程:

一、复习。

1.百分数的意义是什么?

2.把下面的小数化成分数,并说一说是怎样化的?

3.把下面的分数化成小数,说一说是怎样化的?

4.写出下面各百分数。

百分之十六 百分之七十二点五

百分之一百八十 百分之五百

5.把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?

5

二、新授。

1.教学例1。

(1)出示例1:把、、化成百分数。

(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。

= =24%

= = = =140%

= = =%

(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)

(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

(5)完成第80页“做一做”第(1)题。

2.教学例2

(1)出示例2:把27%、135%化成小数。

(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。

(3)启发学生口述每题的转化过程,板书:

27%= =27÷100=

135%= =135÷100=

(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。

(6)完成第80页“做一做”的第(2)题。

3. 引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

4.教学例3

(1)出示例3:春蕾小学的一项调查表明,有蛀牙的学生人数占全校学生人数的20%,没有蛀牙的学生人数占80%。

(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个百分数改写成分数。

(3)根据学生回答,板书:

20%= = 80%= =

(4)想一想:%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)

(5)完成p81“做一做”第1题。

5、教学例4

(1)学生通过小组自学讨论,找出将分数化成百分数的方法。

(2)小组汇报,并举例说明。(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)

(3)完成p82“做一做”第1、2题。

三、巩固练习

1、练习十九第1、2题。

2、练习十九第3题。

四、布置作业

练习十九第5、6、8题。

教学追记:

百分数和小数的互化,我并没有直接给出互化的方法,而是让学生自己探索,通过观察例题,再结合“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。百分数和分数的互化这部分内容与百分数和小数的互化编排类似,因此我放手给学生,让他们通过自学、尝试、实践,掌握百分数与小数互化的方法。同时,通过对方法的探索、分析、比较和总结,培养学生思维的灵活性和抽象概括能力。

用百分数解决问题(2)

教学目标:

1、 掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。

2、 提高学生迁移类推和分析、解决问题的能力。

教学重点:

掌握解决此类问题的方法。

教学难点:

理解题中的数量关系。

教学过程:

一、 复习

1、 把下面各数化成百分数。

7

2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)

(1)某种学生的出油率是36%。

(2)实际用电量占计划用电量的80%。

(3)李家今年荔枝产量是去年的120%。

二、新授

1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

(1)计划造林是实际造林的百分之几?

(2)实际造林是计划造林的百分之几?

(3)实际造林比计划造林增加百分之几?

(4)计划早林比实际造林少百分之几?

2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。

3、学生自主解决“实际早林比计划增加了百分之几”的问题。

(1)分析数量关系,让学生自己尝试着用线段图表示出来。

(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)

(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。

方法一:(14-12)÷12=2÷12≈=%

方法二:14÷12≈=% %-100%=%

(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。

(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?

学生列出算式:(14-12)÷14

(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)

三、巩固练习

1、独立完成课本第90页“做一做”的题目。

2、练习二十二第1、2题。

四、布置作业

练习二十二第3、4题。

教学追记:

求“相差率”的应用题,是在“求比一个数多(少)几分之几的基础上”发展的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件没有直接给出,需要根据题里的条件先算出来。教学中,我充分让学生理解这一点,理解了这个道理,对于学生的解题起到了不小的帮助作用。同时,我紧扣线段图,帮助学生理解题意,分析数量关系,再通过讨论学习的方式,让学生自主尝试,并理解两种不同解法的含义。

分数的意义教学设计 三年级认识分数教学设计【第二篇】

苏教版义务教育课程标准实验教科书,六上《分数四则混合运算》

1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确计算;主动体会整数运算律在分数运算中同样适用,能运用运算律进行有关分数的简便计算,体验简便运算的优越性。

2、使学生在理解运算顺序和简便计算的过程中,进一步培养观察、比较、分析和抽象概括能力。

3、使学生在学习过程中,体会到数学知识的内在联系,积累数学学习的经验。

分数四则混合运算的顺序。

灵活使用运算律计算分数四则混合运算。

一、复习铺垫,重温整数四则混合运算的运算顺序。

1、板演:5/8×18 1—3/4 4/5÷3/4 2/3+4/7

说说分数四则运算的方法。

2、谈话:中国结是我们中华民族特有的传统工艺制作,元旦时我们班将用它来装扮教室。出示场景图:小的中国结每个用4分米彩绳,大的中国结每个用6分米彩绳。两种中国结各做18个,一共用彩绳多少米?

3、学生口头列式,说说运算顺序。

4、提问:两种方法,哪一种计算更简便?为什么?

4、小结:整数、小数四则混合运算的运算顺序都是先算乘除法,再算加减法。有括号的先算括号里面的.。还可以使用运算律使计算更简便。

二、主动探索,理解分数四则混合运算的运算顺序

1、将数据改为例1的场景图,学生自主列出综合算式。

板书:2/5×18+3/5×18 (2/5+3/5)×18

2、交流两种算式的不同思路:列式时你是怎样想的?

3、指出:在一道有关分数的算式中,含有两种或两种以上的运算,称为分数四则混合运算。

这两道算式都属于分数四则混合运算。(板书课题)

4、独立思考,尝试计算

(1)提问:根据以往计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?

使学生明确:分数四则混合运算的运算顺序和整数小数四则混合运算的运算顺序相同。

(2)尝试:这两道算式你能试一试吗?

学生分别计算,指名板演。

5、交流算法,理解顺序

让学生结合具体问题情境说说运算顺序。说清先算什么,再算什么。

6、小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。也是先算乘除法,再算加减法,有括号的先算括号里面的。

三、算中体验,把整数的运算律推广到分数。

1、讨论:这两个算式,如果让你选择,你喜欢计算哪一个?为什么?

使学生明确第二个算式因为括号内的和是整数,所以计算比较简便。

2、观察:这两种算式有什么联系?

得出:两种方法从算式来看,其实是乘法分配律的运用。

3、引导:两个不同的算式,求的都是“一共用彩绳多少米”。从中,你得到了什么启发?

4、小结:整数的运算律在分数中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。

四、练习巩固,正确计算。

1、练一练第1题

先让学生说说运算顺序,再计算。

反馈时:可以让学生说说自己的算法,第1题的除法和乘法你是怎么处理的?

小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。但整数四则混合运算通常是一次计算出一个得数,而分数四则混合运算的乘除法连在一起时可以同时运算。

提问:你是怎么检查结果是否正确的?

使学生重温检查的方法,养成习惯:(1)数字、符号有没有抄错;(2)每一步的计算是否正确;(3)书写格式是否规范。

2、练一练第2题

独立完成

交流时,说说应用了什么运算律或运算性质,为什么要这样算。

提问:分数四则混合运算在使用运算律时,有什么特别之处?

小结:整数四则混合运算在使用运算律时,常常是使用运算律凑成整十或整百、整千数再计算,但分数四则混合运算在使用运算律时,通常是凑成整数,或者观察是否有利于约分。计算步数较多的题时,要随时注意使运算简便。

3、练习十五1、2题

独立完成

五、全课总结

说一说:这节课你有哪些收获或不足?

计算分数四则混合运算时,你觉得你对同学们可以提出什么样的友情提醒?

六、练习设计:

1、填空:(1/9+5/6)×18=( × + ×)

4/7×1/6+4/7×5/6= ×( + )

2、下面四个算式中,得数最大的是:( )

(1/7+1/9)×10 (1/8+1/9)×10 (1/8+1/10)×10 (1/9+1/10)×10

3、用简便方法计算:

(4/5—3/4)×20 (5+4/5)×10 7/9×15/11—7/9×4/11 (9/4+9/7)÷9/28

4、解决问题:一块地,长1/2米,宽是长的4/5,这块地的周长是多少?

分数的意义教学设计 三年级认识分数教学设计【第三篇】

1、使学生知道分数的产生,理解分数的意义,特别是理解单位“1”、分子、分母的意义,学会用分数描述生活中的事情。

2、培养学生动手操能力和概括能力。

3、让学生在轻松和谐的课堂教学氛围中主动参与,在操作体验中,激发学习兴趣,树立学好数学的信心。

分数的意义,正确认识单位“1”。

单位“1”概念的建立。

教具:课件、图片,电子白板。

引导学生 自学、带着问题学,培养良好的学习习惯。

1、提问:

(1)把2个苹果平均分给2个小朋友,每人分的几个??

(2)把1个苹果平均分给2个小朋友,每人分的几个?(每人分得这个苹果的 2/ 1)?

1、关于分数,你知道了分数哪些知识?分数是怎样产生的呢?能说出几个简单的分数吗?

2、关于分数,你还想知道什么?

设计意图:注意新旧知识的衔接,为建立单位“1”打下基础。

探究单位“1”是一个物体或一个计量单位的分数

初步得出:把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,我们可以用分数来表示。

引导学生说出:原来是把一个物体或一个计量单位看作一个整体,现在是把许多物体看作一个整体。

练习:举例,然后说出各个例子中的单位“1”。

设计意图:把单位“1”从一个物体过渡到一个整体,初步建立单位“1”概念。

小结:单位“1”可以指一个物体、一个计量单位,还可以指由许多物体组成的一个整体。能说说我们生活中哪些物体可以看作单位“1”?

设计意图:进一步认识单位“1”,使学生理解单位“1”,不仅可以是一个物体,许多物体也可以看成单位“1”。为充分理解分数的意义基础。

练习

⑴我们学到这里大家能说说什么叫做分数?(同学试着说说)

⑵读读书上是怎么说的?

⑶课件出示分数的意义:让学生再读一遍。

⒎认识分数的各部分名称

同桌同学说分数,说名称。

活动六:巩固应用?? 拓展练习?? 思考题

?课件出示

通过这节课的.学习,同学们知道了什么?

板书设计:

分数的产生和意义

分数的产生? 生活的需要

分数的意义

1/4? 3/4

把一个整体平均分成若干份,这样的一份或几份的数都可以用分数表示。

分数的意义教学设计 三年级认识分数教学设计【第四篇】

1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3、激发学生积极主动的情感状态,体验互相合作的乐趣。

1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

2、自主探究出分数的基本性质。

课件、正方形的纸

1、回忆旧知

根据“288÷24=12”填空

÷=

2880÷240=

÷=

÷()=12

被除数÷除数=()

说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

2、出示学习提示。

a、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

b、验证结束后,把你的验证方法和结论与小组同学交流。

3、汇报交流

指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

c、总结规律

1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。

2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。

3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)

d教学例2

把2/3和10/24都化为分母为12而大小不变的分数。

学生独立完成,集体订正。

1、填空

2、下面算式对吗?如果有错,错在哪里?

3、把相等的分数写在同一个圈里。

4、老师给出一个分数,同学们迅速说出和它相等的分数。

教材59页第9题。

师:这节课你有什么收获?

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的意义教学设计 三年级认识分数教学设计【第五篇】

新课标实验教科书六年级上册第85-86页,完成做一做和练习二十的1-4题。

1、使学生加深对百分数的认识,能理解达标率、发芽率、出油率等这些百分率的含义,掌握有关百分率的计算方法,能用百分数解决生活中一些简单的实际问题。

2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。

3、使学生了解求百分率在生产、生活中的重要性,激发学生学习的积极性,初步渗透概率统计思想。

掌握常用的百分率的计算公式。

理解达标率、发芽率、出油率等一些百分率的含义

1、提问:百分数表示什么?

2、说出以下百分数的含义:

我们班第三单元测验,有97%的人达到了优秀。

我们有45%的人近视。

师:由于百分数表示一个数是另一个数的百分之几,所以解决百分数的问题可以依照解决分数问题的方法。今天,我们就一起来学习“用百分数解决问题”。(板书课题)

(一)教学达标率

1、出示信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。达标学生的人数占总人数的几分之几?

2、学生解答,反馈: 板书: =

3、问:你能把这个结果用百分数表述出来吗?

4、师:达标学生的人数占总人数的百分之几也叫做达标率。(请1~2人复述什么叫达标率。)

板书:达标率:达标学生的人数占总人数的百分之几。

5、引导学生总结达标率的计算公式。

板书:达标率=达标学生人数 / 学生总人数 ×100%

问:公式中为什么要乘100%?(因为达标率是百分率的的一种,公式本身应该用百分数的形式(%)表示。如果公式单写成“达标率=达标学生人数 / 学生总人数 ”只是分数形式,而不是百分数。如果在“达标率=达标学生人数 / 学生总人数”的后面添上“×100%”(相当于×1),就可以既使数值不变,而又是百分数的形式。)

6、在题目中再加上一问:六年级学生的达标率是多少?让学生解答。

板书:

120/160×100%=×100%=75%

问:“达标率是75%”是指什么?后面要不要写单位?为什么?(百分率是表示两个数的比,没有单位名称。)

7、比较一下求达标率和求达标学生的人数占总人数的几分之几有什么相同的地方和不同的地方。

(二)教学发芽率

1、创设情境,出示例1第(2)题,问:发芽率的含义是什么?(发芽率是指发芽的种子数占种子总数的百分之几。)

2、学生尝试算出绿豆种子的发芽率。

3、反馈算法,问;你能不能像计算达标率一样,也总结出一个计算发芽率的公式呢?让学生把书85页的公式填完整。

板书:发芽率=发芽种子数 /种子总数 ×100%

4、让学生继续算出花生和大蒜种子的发芽率。

5、教师说明:发芽率对于农民种田是十分重要的。农民伯伯需要根据发芽率的高低来选择种子品种和决定播种面积。这样,既可以保证所需苗的棵数不多不少,又可以避免种子的浪费。所以求发芽率对农业生产丰收有重要作用。

(三)其它百分率的计算

1、师:生活中用百分率进行统计的还有很多,像产品的合格率、小麦的出粉率等等,你还能说出一些百分率的例子吗?(出勤率、出米率、出油率、及格率、优秀率、成活率、命中率、升学率……)

2、你知道这些百分率的含义吗?可以怎样求出这些百分率呢?小组讨论、交流。

3、全班交流,总结一些常用的百分率的计算公式。

1、完成书86页“做一做”第2题。

2、书第87页第1题。

完成第1题后,可提问:我们班某天的出勤率为100%,说明了什么?有人预测我们班明天的出勤率为120%,可能吗?让学生思考、讨论。

3、判断:

(1)学校上学期种的105棵树苗现在全部成活,这批树苗的`成活率是105%。

(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。

(3)25克盐放入100克水中,盐水的含盐率是25%。

4、解决问题:

①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.

②在一次数学测验中,六年级一班同学一共做了400题,错误了16题,求错误率。

5、变式练习

(1)种了100棵树,死了1棵,求成活率

(2)25克盐和100克水,求盐水中的含盐率

课后反思:今天这节课的主要内容是求“百分率”,联系生活实际,我列举一些生活中常见的百分率,提高学生的学习兴趣,回答问题有了一定的基础,突破了重点,难点。 课堂上我设计了基本练习、变式练习、综合练习,都来自生活,一环扣一环,层层加深,既练了学生的思维能力,让不同层次的学生都学有所得,也充分体现了数学与生活相结合,使学生真正享受数学带来的快乐,让他们在学中乐,乐中学。比如从例题求一对有着相对关系的出勤率和缺勤率,了解它们之和是100%,到基本练习达标率、发芽率等从单一的计算百分率,到“种了100棵树,死了1棵,求成活率”、“25克盐和100克水,求盐水中的含盐率”等变式练习,有效地培养了学生的思维的灵活性和广阔性,提高了学生的分析问题和解答问题的能力。

相关推荐

热门文档

48 958415