首页 > 工作范文 > 范文大全 >

简短的数学家小故事优质4篇

网友发表时间 524615

【导言】此例“简短的数学家小故事优质4篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

简短的数学家小故事【第一篇】

欧拉是瑞士数学家,英国皇家学会会员。欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。

欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为”数学界的莎士比亚"。

简短的数学家小故事【第二篇】

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小屁孩读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的'发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯在以后数学方面作出了重要的研究。

简短的数学家小故事【第三篇】

1785年,8岁的小高斯在德国农村的一所小学里念一年级。

学校的老师是城里来的。他有个偏见,总觉得农村的孩子不如城里的孩子聪明伶俐。不过,他对孩子们的学习,要求还是严格的。

有一天,他给学生们出了一道算术题。他说:“你们算一算,1加2加3,一直加到100,等于多少?谁算不出来,不准回家吃饭。”

说完,他就坐在一边的椅子上,用目光巡视趴在桌子上演算的学生。

不到1分钟的功夫,小高斯站了起来,手里举着小石板,说:“老师,我算出来了”

没等小高斯说完,老师就不耐烦地说:“错了!重新再算!”

小高斯很快地把算式检查了一遍,高声说:“老师,没有错!”说着走下座位,把小石板伸到老师面前。

老师低头一看,看见上面端端正正地写着“5050”,不禁大吃一惊。他简直不敢相信,这样复杂的题,一个8岁的孩子,用不到1分钟时间就算出了正确的得数。要知道他自己算了一个多小时,算了三遍才把这道题算对的。他怀疑以前别人让小高斯算过这道题。他问小高斯:“你是怎么算的?”

小高斯回答说:“我不是按照1、2、3的次序一个一个往上加的。老师,你看,一头一尾的两个数的和都是一样的:1加100是101,2加99是101,3加98也是101把一前一后的数相加,一共有50个101,101乘以50,得5050。”

小高斯的回答,使老师感到吃惊。因为他还是第一次知道这种算法。他惊喜地看着小高斯,好像刚刚认识这个穿着破烂不堪的砌砖工人的儿子。

简短的数学家小故事【第四篇】

祖冲之(公元429—500年)是我国南北朝时期。河北省涞源县人。他从小就阅读了许多天文。数学方面的书籍。勤奋好学。刻苦实践。终于使他成为我国古代杰出的数学家。天文学家。

祖冲之在数学上的杰出成就。是关于圆周率的计算。秦汉以前。人们以”径一周三“做为圆周率。这就是”古率“。后来发现古率误差太大。圆周率应是”圆径一而周三有余“。不过究竟余多少。意见不一。直到三国时期。刘徽提出了计算圆周率的科学方法——”割圆术“。用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形。求得π=。并指出。内接正多边形的边数越多。所求得的π值越精确。祖冲之在前人成就的基础上。经过刻苦钻研。反复演算。求出π在3。1415926与之间。并得出了π分数形式的近似值。取为约率。取为密率。其中取六位小数是。它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果。现在无从考查。若设想他按刘徽的”割圆术“方法去求的话。就要计算到圆内接16。384边形。这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率。外国数学家获得同样结果。已是一千多年以后的事了。为了纪念祖冲之的杰出贡献。有些外国数学史家建议把π=叫做”祖率“。

祖冲之博览当时的名家经典。坚持实事求是。他从亲自测量计算的大量资料中对比分析。发现过去历法的严重误差。并勇于改进。在他三十三岁时编制成功了《大明历》。开辟了历法史的新纪元。

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起。用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:”幂势既同。则积不容异。“意即。位于两平行平面之间的两个立体。被任一平行于这两平面的平面所截。如果两个截面的面积恒相等。则这两个立体的体积相等。这一原理。在西文被称为卡瓦列利原理。但这是在祖氏以后一千多年才由卡氏发现的了纪念祖氏父子发现这一原理的重大贡献。大家也称这原理为”祖暅原理“。

相关推荐

热门文档

48 524615