首页 > 工作范文 > 范文大全 >

概率论与数理统计论文范例【最新10篇】

网友发表时间 1716280

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“概率论与数理统计论文范例【最新10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

概率论与数理统计论文范文【第一篇】

重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。

难点:随机事件的概率,乘法公式、全概率公式、bayes公式以及对贝努利概型的事件的概率的计算。

事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。事件关系及其运算是本章的重点和难点,概率计算是本章的重点。注意事件与概率之间的关系。本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。相当一部分考生对本章中的古典概型感到困难。大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。

与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。但与线代一样,概率也常常被忽视,有时甚至被忽略。一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。

概率这门课如果有难点就应该是"记忆量大"。在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。

概率部分第二章《随机变量及其分布》、第三章《随机变量的数字特征》中在每章开始列出的那些大表格,都应该自己记忆,可以省略不看的内容少之又少。所以对于概率部分相当多的内容都只能先死记硬背,然后通过足量做题再来牢固掌握,走一条"在记忆的基础上理解"的路。如果记牢公式性质,同时保证足够的习题量,考试时概率部分20%的分值基本上就不难拿到了。

应该将本章重点中的有关基本概念、基本理论和基本方法彻底理解和熟练掌握。

概率论与数理统计论文范文【第二篇】

首先是极限。极限在数一中还是占着很大的比重,考试的只要考查方式就是求极限,还有就是一些单调有界定理的使用。我们要充分掌握求不定式极限的种种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;其次就是极限的应用,主要表现为连续,导数等等,对函数的连续性和可导性的探讨也是考试的重点,这要求我们直接从定义切入,充分理解函数连续的定义和掌握判定连续性的方法。

虽然导数是由极限定义的,然而真正在考试的过程中,我们求一个函数的导数时,我们并不会直接用定义去求,更多的是直接从求导公式中去求一个函数的导数。导数的考查方式主要还是和其它的知识点相结合,很少直接给你一个函数让你求导数。例如不等式的证明,函数单调性,凹凸性的判断,二元函数的偏微分等等。换句话说,导数是一个基础。

中值定理一般会两年至少考一次,多是以证明题的方式出现,而且常常和闭区间上的连续函数的性子相结合,以与罗尔定理为重点。

积分与不定积分是考试的重中之重,尤其是多元函数积分学更是每年的必考题型,平均一年会出两道大题,而且定积分、分段函数的积分、带绝对值的函数的`积分等种种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,固然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。对于曲线积分和曲面积分,考查方式以格林公式和高斯公式的应用为主,大家一定要注意格林公式和高斯公式的使用条件,考试的过程中往往会在这里设置陷阱。这两部分内容相对比较零散,也是难点,需要记忆的公式、定理比较多。

微分方程中需要熟练掌握变量可分散的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无限级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。

数学远没有大家想象中的那么难,只要大家充分掌握住这些重点,根据自己的情况有针对性的复习会到达很不错的效果,并且在有限的时间内复习数学,大家必须明确,在完成这个阶段的复习之后,自己会到达一个什么样的高度。相信经过有计划有目标的复习,每个同学都可以使自己的综合解题能力有一个质的提高,从而在最后的考试中考出好的成绩。

概率论与数理统计论文范文【第三篇】

2013年考研结束了,相信很多考生松了一口气。今年的考研数学试题从整体上看,与去年差别不大,难度相比去年略有提升。专家现从概率论与数理统计这个科目出发,对今年的考试做一下几方面分析。

首先,出题的方向和题目的类型也都完全在预料之内,没有偏题怪题。只要考生有比较扎实的基础,复习全面,是很容易拿到高分的。细致地分析起来,今年的题目有这样几个特点:

一是依旧强调对概念的理解。如数学一和数学三的填空题,都是考查概念。数一的第七题,考查对概念的进一步理解。只要掌握好概念,客观题是很容易拿到分数的。

二是仍以计算为主。如在正确掌握概念的基础上,还是以计算为主。无论是数一数三的.解答题还是客观题,每道题都需要计算。所以计算还是我们考试的主体。

三是考查学生的分析能力。如数学一的第8题,就考查我们的分析能力。直接根据概念做是做不出来的,需要分析出他们的关系,从而解出最后结果。还有数三的第8题,需要先分析出x+y=2的所有可能情况,然后才能得出正确结果。

概率论与数理统计和高等代数不同,高等代数中计算技巧多一些,而概率论与数理统计概念和公式比较多,对计算技巧的要求低一些,但对考生分析问题的能力要求高一些,概率论与数理统计中的一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。

要达到考试的要求只要公式理解的准确到位,并且多做些相关题目,考卷中碰到类似题目时就一定能够轻易读懂和正确解答。概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二项分布,要结合他的实际背景,伯努利试验中成功的次数的概率。这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。

只有掌握了最本质的概念,在此基础上做一定量的题去巩固所学知识。这样才能对概念的理解更加到位,从而做题更加轻松快捷准确。

概率论与数理统计论文范文【第四篇】

随机变量及其分布函数的概念和性质,分布律和概率密度,随机变量的函数的分布,一些常见的分布:0-1分布、二项分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用。而重点要求会计算与随机变量相联系的事件的概率,用泊松分布近似表示二项分布,以及随机变量简单函数的概率分布。

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。

1.求一维随机变量的分布律、分布密度或分布函数;。

2.一个函数为某一随机变量的分布函数或分布密度的判定;。

3.根据概率反求或判定分布中的参数;。

4.求一维随机变量在某一区间的概率;。

5.求一维随机变量函数的分布。

概率论与数理统计论文范文【第五篇】

概率论与数理统计是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。

二、本课程的目的和任务。

本课程是工科以及管理各专业的基础课程,课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在各领域中的具体应用。课程的任务在于使学生初步掌握处理随机现象的基本理论和方法,培养他们解决某些相关实际问题的能力。

三、本课程与其它课程的关系。

学生在进入本课程学习之前,应学过下列课程:

高等数学、线性代数。

这些课程的学习,为本课程提供了必需的数学基础知识。本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。

四、本课程的基本要求。

概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。通过对本课程的学习,学生应熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。具体要求如下:

(一)随机事件和概率。

1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和运算。

2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率计算。

3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、贝叶斯公式,并能应用这些公式进行概率计算。

4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。

5、掌握伯努利概型及其计算。

(二)随机变量及其概率分布。

1、理解随机变量的概念。

2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。

3、掌握(0-1)分布、二项分布、泊松分布、正态分布、均匀分布和指数分布。

4、会求简单随机变量函数的概率分布。

(三)二维随机变量的联合分布。

1、了解二维随机变量的概念。

2、了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律及其性质,了解二维连续型随机变量的联合概率密度及其性质,并会用它计算有关事件的概率。

3、了解二维随机变量的边缘分布和条件分布。

4、理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。

5、会求两个独立随机变量的简单函数的分布。

(四)随机变量的数字特征。

1、理解数字期望和方差的概念,掌握它们的性质与计算。

2、掌握二项分布、泊松分布和正态分布的数学期望和方差,了解均匀分布和指数分布的数学期望和方差。

3、会计算随机变量函数的数学期望。

4、了解矩、协方差和相关系数的概念与性质,并会计算。

(五)大数定律和中心极限定理。

1、了解切比雪夫不等式。

2、了解切比雪夫大数定律和伯努利大数定律。

3、了解林德伯格一列维定理(独立同分布的中心极限定理)和棣莫佛-拉普拉斯定理(二项分布以正态分布为极限分布)。

(六)数理统计的基本概念。

1、理解总体、个体、简单随机样本和统计量的概念,掌握样本均值、样本方差及样本矩的计算。

2、了解分布、t分布和f分布的定义及性质,了解分布分位数的概念并会查表计算。

3、了解正态总体的某些常用统计量的分布。

(七)参数估计。

1、理解点估计的概念。

2、掌握矩估计法和极大似然估计法。

3、了解估计量的评选标准(无偏性、有效性、一致性)。

4、理解区间估计的概念。

5、会求单个正态总体的均值和方差的置信区间。

6、会求两个正态总体的均值差和方差比的置信区间。

(八)假设检验。

1、理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

2、了解单个及两个正态总体的均值和方差的假设检验。

3、了解总体分布假设的x2检验法.

五、课程内容。

理论教学内容。

第一章随机事件及其概率。

1-1随机事件、样本空间。

1-2频率与概率。

1-3古典概型。

1-4条件概率。

1-5事件独立性。

第二章随机变量及其分布。

2-1随机变量。

2-2离散型随机变量及其概率分布。

2-3连续型随机变量及分布函数。

2-4常用连续型分布。

2-5随机变量函数的分布。

第三章多维随机变量及其分布。

3-1二维随机变量。

3-2边缘分布。

3-3条件分布。

3-4相互独立的随机变量。

3-5两个随机变量函数的分布。

第四章随机变量的数字特征。

4-1数学期望。

4-3协方差、相关系数。

4-4矩、协方差矩阵。

第五章大数定律与中心极限定理。

5-1大数定律。

5-2中心极限定理。

第六章数理统计的基本概念。

6-1总体与样本。

6-2统计量与抽样分布。

第七章参数估计。

7-1点估计。

7-2点估计的性质。

7-3区间估计。

7-4正态总体参数的区间估计。

7-5单侧置信区间。

第八章假设检验。

8-1假设检验的基本概念。

8-2单个正态总体的参数检验。

8-3两个正态总体的参数检验。

8-4分布拟合检验。

实践教学内容(习题课)。

第一章、第二章、第三章配合课堂教学内容,每章安排一次习题课,第四章和第五章,第六章和第七章,第八章安排三次习题课,共六次,每次2学时。

六、教材与参考书。

1、教材。

2、主要参考书。

七、本课程的教学方式。

本课程有其独特的数学概念和方法,并大量向各学科渗透并与之结合成不少边缘学科,其教学方式应注重启发式、引导式,课堂上注意经常列举本课程在各领域成功应用的实例,增强同学的学习热情,讲授时应注意善于联系已学过课程的有关概念、理论和方法,使同学加快对本课程的基本概念、基本理论和基本方法的理解。

配合理论教学需要,在习题课中通过合适的例题和适当的讲解,使同学通过做题既加深对课堂讲授的内容的理解,又增强运用理论建立数学模型、解决实际问题的能力。

概率论与数理统计论文范文【第六篇】

概率论与数学分析是数学的两个不同分支,数学分析是确定性数学的典型代表,概率论则是随机数学的典型代表。由于两者所研宄的方向不同,故它们的发展道路大相径庭,但是在各自的发展过程中二者却又紧密地结合在一起,数学分析的发展为概率论奠定了基础,而概率论中随机性、反因果论也逐渐滲透到数学分析当中,推动着数学分析的发展。研宄概率论与数学分析两者之间的相互关系,并寻绎概率论在解决数学分析中某些比较困难的问题的方法、思想,是很有意义的。

1.数学分析对概率论的渗透与推动。

1933年,苏俄数学家柯尔莫哥洛夫以集合论、测度论为依据,导入了概率论的公理化体系,概率论得以迅猛发展,在其迅猛发展的道路上,数学分析的思想与方法随处可见。

集合论与概率论的公理化体系。

由于数学的研究对象一般都是具有某种性质或结构。世纪数学分析的严密化过程当中培育出来的,两者之间是源和流的关系;又由于勒贝格积分建立了集合论与测度论的联系,进而形成了概率论的公理化体系;因而集合论对概率论的滲透,可视为微积分对概率论的一次较有力的.推动。

数学分析中主要有黎曼积分和勒贝格积分两种。黎曼积分处理性质良好的函数时得心应手,但对于级数、多元函数、积分与极限交换次序等较为棘手的问题时,常常比较困难。勒贝格积分的出现,使黎曼积分遇到的难题迎刃而解,微积分随之进化到了实变函数论的新阶段。有了勒贝格积分理论以后,集合测度与事件概率之间的相似性便显示出来了。不仅如此,测度论中的几乎处处收敛与依测度收敛,实质上就是弱大数定律与强大数定律中的收敛。1933年,苏俄数学家柯尔莫哥洛夫,建立了在测度论基础上的概率论的公理化体系2,统一了原先概率的古典定义、几何定义及频率定义纷争不一的局面。他建立的公理化体系,具备了独立性、无矛盾性、完备性的公理化特征,确定了事件与集合、概率与测度的关系,使集合论加盟概率论。概率论在坚实的公理化基础上,已成为一门严格的演绎科学,取得了与其他数学分支同等的地位,并通过集合论与其他数学分支密切地联系着。

傅立叶变换与特征函数傅立叶级数是数学分析中十分有效的工具。事实上,不仅是傅立叶级数,还有傅立叶积分、傅立叶变换等等也都是数学分析中的重要工具。它们除了在数学分析领域内发挥着重要的作用之外,也已滲透到了概率论领域当中。其中,把傅立叶变换应用于分布函数或密度函数,就产生了所谓的“特征函数”于是,对于处理独立随机变量和与随机变量序列的问题,就显得十分方便了。

在数学分析中有如下定理:

正是由于概率论运用了傅立叶变换的这些相关知识,构造和引进了特征函数,使多维随机变量分布、极限分布研宄更便捷,从而把概率论的理论研宄推进一个崭新的阶段。

雅可比行列式与随机变量函数的分布在数学分析当中,我们所接触的函数大多是显函数,但除了显函数外,也常会遇到另一种形式的函数一隐函数,尤其是隐函数组。为了确定所给方程组的隐函数组是否存在,德国数学家雅可比在偏微分方程的研宄中,引进了“雅可比行列式”对此问题给予了解决。同样,在概率论中,应用雅可比行列式j,可以一下子解决多维随机变量(x,)的函数zu,)的概率分布问题。

同阶数量级与极限定理大数定律与中心极限定理是概率论研宄的中心问题,

也是数理统计中的理论基础。由于两者讨论的都是随机变量序列的极限问题,这与数学分析中的数列极限、函数列极限极为相似且联系十分密切,因此,对于数学分析中的同阶数量级方法在解决概率论的大数定律与中心极限定理的有关问题中同样是适用的。

函数与随机变量、分布函数。

函数是数学分析中最基本的概念之一,当它被引入概率论领域以后,概率论中的许多问题便得到了简化,从而使概率论进入了一个崭新的阶段。

随机变量与分布函数是概率论中最为重要的两个概念,并且都是函数,其中,随机变量x为集函数,分布函数为实函数。在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间转化为数集,概率相应地由集函数约化为实函数。以函数的观点衡量分布函数,分布函数的性质是十分良好的:单调有界、可积、几乎处处连续、几乎处处可导。此外,随机变量x的数字特征、概率密度与分布函数的关系、连续型随机变量x的概率计算等等,同样运用了微积分的现成成果。

随机变量与分布函数的导入,从理论上结束了概率的古典时代。概率论的公理化、体系化的动力源,不仅是集合论和测度论,更重要、更基本的,仍然是数学分析那一套理论。概率论形成体系后的快速发展,不妨视作概率论向着微积分的靠拢与回归。

尽管随机变量x的导入方式有一定的自由度,不具备唯一性;尽管随机变量x的取值需服从一定的概率分布;尽管分布函数可以视为集函数,可以描述任何种类的随机变量x的随机性质,但是在函数的范畴内,它们的本质是一致的,既然都是函数家族的成员,就具备了确定性和因果律。

综上可见,数学分析的思想方法,已经滲透到了概率论的各个方面。没有微积分的推动,就没有概率论的公理化与系统化,概率论就难以形成一门独立的学科。

2概率方法在数学分析中的应用。

从上可知,在数学分析的渗透与推动作用下,概率论得到了飞快地发展。与此同时,由于概率论本身所具有的特征,使得数学分析中某些比较困难的问题得以高效简捷性地解决。

数学期望与不等式不等式是数学分析中的重要内容,在数学分析中不等式问题经常碰到,例如级数不等式、积分不等式等等。数学分析中可以使用多种方法进行证明这些不等式,可是证明起来却相当不容易。然而倘若巧妙地运用概率论中数学期望性质,数学分析中的不等式问题便可以很轻易地得到证明。

概率论中数学期望的性质:

中心极限定理在数学分析中的特殊作用。

概率论的中心极限定理为棣莫弗-拉普拉斯中心极限定理,林德贝格-勒维中心极限定理,林德贝格中心极限定理、李雅普诺夫中心极限定理[3]。这4个中心极限定理的建立不仅为概率论的发展开辟了广阔的前景,同时使概率论与数学分析保持着密切地联系。

极限是数学分析的基础,微积分中一系列重要的概念和方法,都与极限关系密切,数学分析中有一些复杂的极限问题,用通常的数学分析方法是难以计算的,但应用概率论中的中心极限定理则可较简便地得以解决。

由此可见,概率论不仅能解决随机的数学问题,同样也可以解决一些确定的数学问题,是一门同时包含着确定性和非确定性二重品格的特殊的数学学科。

将本文的word文档下载到电脑,方便收藏和打印。

概率论与数理统计论文范文【第七篇】

3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度;。

4.两个或多个随机变量的独立性或相关性的判定或证明;。

5.与二维随机变量独立性相关的命题;。

6.求两个随机变量的相关系数;。

7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。

第4章随机变量的数字特征。

概率论与数理统计论文范文【第八篇】

婚姻状况:未婚民族:汉族。

培训认证:未参加身高:168cm。

诚信徽章:未申请体重:

人才测评:未测评。

我的特长:

求职意向。

人才类型:在校学生。

应聘职位:家教:,兼职教师:

工作年限:1职称:

求职类型:兼职可到职日期:随时

月薪要求:1000以下希望工作地区:广州,广州,。

工作经历。

公司性质:所属行业:

担任职位:

工作描述:

离职原因:

志愿者经历。

教育背景。

毕业院校:广州大学。

概率论与数理统计论文范文【第九篇】

摘要:

在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。

关键词:

概率论,概率论的发展与应用正文。

说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。

那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。

通过这次讨论,开始形成了概率论当中一个重要的概念—————数学期望。这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。

二、概率论的发展。

概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是18出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理,这是一部继往开来的作品。这时候人们最想知道的就是概率论是否会有更大的应用价值?是否能有更大的发展成为严谨的学科。

概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。19,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。

三、概率论在生活中的应用。

(1)概率论在保险中的应用。

保险是一项使投保人和保险公司能够同时取得利益的活动,投保人缴纳一定数额的保险金,如果遇到投保范围内的问题时,保险公司将支付投保人数倍甚至更多的金额,能够在一定程度上帮助投保人解决问题。若是投保人没有出现问题时,其缴纳的保险金是不予以退还的。一般情况下,投保人遇到问题的概率是相对定的,那么保险公司就需要确定合理的赔率来保证公司的盈利,这就涉及到了概率的应用。

(2)概率论在投资中的应用。

俗话说,不要把鸡蛋放在一个篮子里面。同样,这个原理也可以运用于投资中,在购买股票的时候,购买多支股票的要优于购买一支股票,这里可以用概率的方法进行解析。

(3)概率论在交通设施中的应用。

随着城市人口的增加,城市车辆数目的增多,也就出现越来越严重的交通问题。怎么样合理安排路线,成为了交通设施建设中的一个重要环节。而某一时间,某一路线,某一位置会面临怎样的交通状况,是可以运用概率的方法计算出来,正确的处理各种可预测的交通问题,就能为人民的生活出行营造一个舒适的环境。

(4)概率论在密码学中的应用。

随着电脑的`普及,电子文件所占的比重越来越大,在广泛使用的同时,怎样保证其安全性和可靠性呢?这就出现了常见的加密文件。加密文件中密码的存在极大的加强了文件的安全性,采用加密措施的文件,其被破译出来的可能性很小。这一点可以通过概率计算的方法加以验证。

(5)概率论在市场营销中的应用。

生产商,销售商,经济活动中的各个角色在从事一定的经济活动中都需要考虑这一活动所带来的结果,通俗的来说,就是要考虑其所得的利益。那么,销售商在进货的过程中就需要考虑到市场的需求量,产品的价值等综合问题,以获取最大的利益。随着社会的不断发展,概率论与数理统计的知识越来越重要。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。

总之,在科学技术日新月异的今天,概率论将在各个行业发挥不可替代的作用。

概率论与数理统计论文范文【第十篇】

在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。

概率论,概率论的发展与应用正文。

说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。

那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。

通过这次讨论,开始形成了概率论当中一个重要的概念——数学期望。这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。

概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是1812年出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理,这是一部继往开来的作品。这时候人们最想知道的就是概率论是否会有更大的应用价值?是否能有更大的发展成为严谨的学科。

概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。

(1)概率论在保险中的应用。

保险是一项使投保人和保险公司能够同时取得利益的活动,投保人缴纳一定数额的保险金,如果遇到投保范围内的问题时,保险公司将支付投保人数倍甚至更多的金额,能够在一定程度上帮助投保人解决问题。若是投保人没有出现问题时,其缴纳的保险金是不予以退还的。一般情况下,投保人遇到问题的'概率是相对定的,那么保险公司就需要确定合理的倍率来保证公司的盈利,这就涉及到了概率的应用。

(2)概率论在投资中的应用。

俗话说,不要把鸡蛋放在一个篮子里面。同样,这个原理也可以运用于投资中,在购买股票的时候,购买多支股票的要优于购买一支股票,这里可以用概率的方法进行解析。

(3)概率论在交通设施中的应用。

随着城市人口的增加,城市车辆数目的增多,也就出现越来越严重的交通问题。怎么样合理安排路线,成为了交通设施建设中的一个重要环节。而某一时间,某一路线,某一位置会面临怎样的交通状况,是可以运用概率的方法计算出来,正确的处理各种可预测的交通问题,就能为人民的生活出行营造一个舒适的环境。

(4)概率论在密码学中的应用。

随着电脑的普及,电子文件所占的比重越来越大,在广泛使用的同时,怎样保证其安全性和可靠性呢?这就出现了常见的加密文件。加密文件中密码的存在极大的加强了文件的安全性,采用加密措施的文件,其被破译出来的可能性很小。这一点可以通过概率计算的方法加以验证。

(5)概率论在市场营销中的应用。

生产商,销售商,经济活动中的各个角色在从事一定的经济活动中都需要考虑这一活动所带来的结果,通俗的来说,就是要考虑其所得的利益。那么,销售商在进货的过程中就需要考虑到市场的需求量,产品的价值等综合问题,以获取最大的利益。随着社会的不断发展,概率论与数理统计的知识越来越重要。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。

总之,在科学技术日新月异的今天,概率论将在各个行业发挥不可替代的作用。

相关推荐

热门文档

48 1716280