首页 > 工作范文 > 范文大全 >

2024年高一数学教案优推4篇

网友发表时间 1118307

【请您参阅】下面供您参考的“2024年高一数学教案优推4篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

高一数学教案【第一篇】

会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

函数单调性的证明及判断。

函数单调性证明及其应用。

1、函数的定义域、值域、图象、表示方法。

2、函数单调性。

(1)单调增函数。

(2)单调减函数。

(3)单调区间。

例1、画出下列函数图象,并写出单调区间:

(1)(2)(2)。

例2、求证:函数在区间上是单调增函数。

例3、讨论函数的单调性,并证明你的结论。

变(1)讨论函数的单调性,并证明你的结论。

变(2)讨论函数的单调性,并证明你的结论。

例4、试判断函数在上的单调性。

1、判断下列说法正确的是。

(1)若定义在上的函数满足,则函数是上的单调增函数;

(2)若定义在上的函数满足,则函数在上不是单调减函数;

(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。

2、若一次函数在上是单调减函数,则点在直角坐标平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函数在上是______;函数在上是______。

3、下图分别为函数和的图象,求函数和的单调增区间。

4、求证:函数是定义域上的单调减函数。

1、函数单调性的判断及证明。

1、求下列函数的单调区间。

(1)(2)。

2、画函数的图象,并写出单调区间。

3、求证:函数在上是单调增函数。

4、若函数,求函数的单调区间。

5、若函数在上是增函数,在上是减函数,试比较与的大小。

6、已知函数,试讨论函数f(x)在区间上的单调性。

变(1)已知函数,试讨论函数f(x)在区间上的单调性。

高一数学教案【第二篇】

1.注重书写,忽视新思想、新方法的体现。检查与评价教案设计的好坏,往往凭着书写工整、结构完整、环节清楚、字数多少、板书设计、教学随笔数量等来评定教案的优劣,而其中先进的教学理念和先进的教学方法这些本质的东西,往往被忽略,有个性的教案往往得不到公正的肯定和倡导,"逼迫"教师随"大流",不敢站到课改的前沿,久而久之教师的教案就还原到管理者的意识上来,迎合理管者的要求。

2.注重格式,忽视差异性、个性的体现。目标、重难点、提问、板书、课时、教具等均作统一要求。

不考虑教师的个性、教学经验与能力、学科的差异、内容的侧重,不顾教师、班级的实际情况,追求统一的检查与评定,束缚了教师的创造性的发挥,导致了教案形式上的"八股文",使本来很严肃、很有创意的编写变成抄写,丧失了教案设计的意义。

3.注重详案,忽视合理性、操作性的体现。检查者只关注教案本身编写的页数、书写工整程度、环节结构完整程度。而不与教师的教、学生的学结合,不与教学过程结合,不与教学效果结合,教案设计的合理性与操作性缺乏深入细致的检查。

高一数学教案【第三篇】

本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。

(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。

(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。

本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。

教学的重点、难点。

(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。

(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。

本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异。

(1)教学方法及教学手段。

针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。

在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。

(2)学法指导。

力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。

(一)创设情境,引出课题。

通过摄影作品及汽车设计图纸引出问题。

1、照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识。

设计意图:通过摄影作品及汽车设计图纸的展示引出问题1,2,从贴近生活的实例入手,给学生以视觉冲击,引领学生进入本节课的内容。

引出课题:投影与三视图。

知识探究(一):中心投影与平行投影。

光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影。其中的光线叫做投影线,留下物体影子的屏幕叫做投影面。

不同?

思考6:一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?师生活动:学生思考,讨论,教师归纳总结。

设计意图:讲解投影,投影线,投影面,让学生了解投影式如何形成的。通过六个思考层层深入,学生在思考讨论的过程中总结出投影的分类及每种投影的特点。

知识探究(二):柱、锥、台、球的三视图。

把一个空间几何体投影到一个平面上,可以获得一个平面图形。但只有一个平面图形难以把握几何体的全貌,因此我们需要从多个角度进行投影,这样就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面。

从不同的角度看建筑。

问题1:要很好地描绘这幢房子,需要从哪些方向去看?

问题2:如果要建造房子,你是工程师,需要给施工员提供哪几种图纸?

设计意图:通过观察大楼的图片,提出问题1,2,这种设计更易于让学生接受,说明数学与生活密不可分。

给出三视图的含义:

(1)光线从几何体的前面向后面正投影得到的投影图,叫做几何体的正视图;

(2)光线从几何体的左面向右面正投影得到的投影图,叫做几何体的侧视图;

(3)光线从几何体的上面向下面正投影得到的投影图,叫做几何体的俯视图;

(4)几何体的正视图、侧视图、俯视图统称为几何体的三视图。

思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?

一个几何体的正视图和侧视图的高度一样,俯视图和正视图的的长度一样,侧视图和俯视图的宽度一样。

思考3:圆柱、圆锥、圆台的三视图分别是什么?

思考4:一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度有什么关系?师生活动:分小组讨论,动手操作来完成思考题。

设计意图:通过多媒体的动态演示,对学生的结论进行验证,大概花15分钟的时间来完成这部分的教学。学生自主归纳总结将本节课的重点化解。

长对正,高平齐,宽相等。

高一数学教案【第四篇】

3.会求抛物线的标准方程。

1.完成下表:

标准方程。

图形。

焦点坐标。

准线方程。

开口方向。

2.求抛物线的焦点坐标和准线方程。

3.求经过点的抛物线的标准方程。

二、问题探究。

探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较。

例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程。

例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程。

例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为。求该抛物线的方程,并写出其焦点坐标与准线方程。

三、思维训练。

1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为。

2.抛物线的焦点到其准线的距离是。

3.设为抛物线的焦点,为该抛物线上三点,若,则=.

4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是。

5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。

四、课后巩固。

1.抛物线的准线方程是。

2.抛物线上一点到焦点的距离为,则点到轴的距离为。

3.已知抛物线,焦点到准线的距离为,则。

4.经过点的抛物线的标准方程为。

5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是。

6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程。

7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。

相关推荐

热门文档

48 1118307