首页 > 工作范文 > 范文大全 >

2023年八年级上册数学知识点归纳笔记精编

网友发表时间 1534179

【导读预览】此篇优秀范文“2023年八年级上册数学知识点归纳笔记精编”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

八年级上册数学知识点归纳笔记篇1

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

3.公因式的确定:系数的最大公约数?相同因式的最低次幂.

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.

4.因式分解的公式:

(1)平方差公式:a2-b2=(a+b)(a-b);

(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.

5.因式分解的.注意事项:

(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式.

6.因式分解的解题技巧:

(1)换位整理,加括号或去括号整理;

(2)提负号;

(3)全变号;

(4)换元;

(5)配方;

(6)把相同的式子看作整体;

(7)灵活分组;

(8)提取分数系数;

(9)展开部分括号或全部括号;

(10)拆项或补项.

7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式?”.

八年级上册数学知识点归纳笔记篇2

(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

(2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式.

(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的.

(4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

(5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式.

(6)如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的,在提出“-”号时,多项式的各项都要变号.

(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式.

(8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.

(9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2=(a+b)(a-b)

(10)具备什么特征的两项式能用平方差公式分解因式

①系数能平方,(指的系数是完全平方数)

②字母指数要成双,(指的指数是偶数)

③两项符号相反.(指的两项一正号一负号)

(11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么.

(12)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.字母表达式:a2±2ab+b2=(a±b)2

(13)完全平方公式的特点:

①它是一个三项式.

②其中有两项是某两数的平方和.

③第三项是这两数积的正二倍或负二倍.

④具备以上三方面的特点以后,就等于这两数和(或者差)的平方.

(14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和).

(15)利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式.

(16)具备什么条件的多项式可以用分组分解法来进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法来分解因式.

(17)分组分解法的前提:熟练地掌握提公因式法和公式法,是学好分组分解法的前提.

(18)分组分解法的原则:分组后可以直接提出公因式,或者分组后可以直接运用公式.

(19)在分组时要预先考虑到分组后能否继续进行因式分解,合理选择分组方法是关键.

(20)对于一个一般形式的二次项系数为1的二次三项式x2+px+q,如果将常数项q分解成两个因数a,b,而a+b等于一次项系数p,那么它就可以分解因式.

即x2+px+q=x2+(a+b)x+ab=(x+a)(x+b)

这里的关键:掌握a,b与原多项式的常数项,一次项系数之间的关系,这个关系主要是:ab=q,a+b=p

相关推荐

热门文档

48 1534179