首页 > 工作范文 > 范文大全 >

语言学与人工智能的心得体会范文 人工智能的心得体会范文【参考5篇】

网友发表时间 1809176

语言学与人工智能的心得体会【第一篇】

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生。

在当前社会中的呢?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。

人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。

有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

语言学与人工智能的心得体会【第二篇】

人工智能是目前科技领域中最受关注的热门话题之一,它涉及到自动化、机器学习、深度学习、自然语言处理等多个方面。我在上“人工智能导论”课程时,对于人工智能这个领域有了一个更深入的认识,并且有了一些心得和体会。本文将从人工智能基础知识、应用场景、发展前景、伦理道德和风险控制五个方面,分别阐述我的心得和体会。

人工智能是一门应用学科,其基础知识主要涉及到数学、计算机科学、机器学习和统计学等多个学科。人工智能的基础可以概括为数据、算法和计算力。数据是人工智能的基础,没有数据就没有训练模型的材料。算法是人工智能的核心,决定了AI的精度和效率。计算力是人工智能的后盾,AI的算法需要高性能的计算机支持。通过学习人工智能的基础知识,我深刻理解了人工智能的基本构成,有助于将人工智能技术应用到实际场景中。

人工智能的应用场景非常广泛,涵盖了医疗、教育、金融、工业等多个领域。其中,医疗领域的应用最为显著,人工智能已经可以辅助医生进行医疗影像诊断、智能化药品研发等工作,大大提升了医生的工作效率和诊断准确率。在教育领域,人工智能也可以辅助教学,提供学习推荐、作业评分、智能化辅导等服务。通过了解人工智能的应用场景,我更加深入了解到人工智能与实际生活密切相关的情况,看到人工智能给社会带来巨大的改变和巨大的发展潜力。

随着人工智能技术和应用的不断推进,人工智能的未来发展可谓非常可观。人工智能技术将进一步普及和深入,涌现出更多新的应用场景。在深度学习算法的推动下,研究领域也将进一步扩展,机器学习等技术将更好地支持人工智能的发展。同时,随着技术的不断进步,人工智能将不断提高智能水平,进入全新的领域,对经济、科技、文化、社会等各个领域产生巨大的影响。了解到人工智能的发展前景,我感受到一个更为智能化和科技进步的未来正在到来。

人工智能的快速发展也带来了伦理问题,其中最为突出的是人工智能对于人类就业的影响。现在的人工智能算法已经可以替代一部分人类工作,人工智能技术的不断发展对于人类整体就业产生了较大的压力。同时,人工智能可能带来的隐私安全、义务问题、道德风险等问题也需要我们认真考虑。这使我意识到在人工智能的发展中,伦理和道德是必须考虑和重视的方面,需要以更高的标准慎重评估人工智能的风险和潜在威胁。

人工智能的发展虽然带来了巨大的机遇和前景,但也带来了一些潜在的风险。例如,人工智能的出错往往是不可逆的,人工智能是否会失控和带来更大的破坏性、自适应的能力等方面的问题也需要考虑。而且,人工智能算法和机器学习往往具有“黑匣子”特性,这使得AI内部表现的运作步骤和逻辑难以被理解和解释。为此,我们需要通过多种方式进行人工智能的风险控制,例如建立标准化的技术规范、加强监管、共同开展关键技术研发等。这些做法有利于限制人工智能所带来的深远影响和潜在威胁。

总之,“人工智能导论”课程让我更加深入的了解了人工智能的基础知识,同时也展示出人工智能在医疗、教育等各个领域的应用场景。与此同时,我也认识到了人工智能对于就业、伦理和风险控制等方面的挑战和问题。对于未来,我们需要更多更深入的研究和探讨,以更好地规范人工智能技术的发展,实现科技和社会的良性互动,实现人工智能发展和人类共存的“双赢”。

语言学与人工智能的心得体会【第三篇】

所谓人工智能,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用的一门新的技术科学。它是计算机科学的一个分支,企图凭借了解智能的实质来生产出一个类似于人类智能对事情做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等方面。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科研成果,将会是人类智慧的体现。人工智能可以对人的意识、思维的信息过程的模拟。人工智能指的是虽然不是人的智能,但能像人那样思考、也可能通过发展演变成超过人的智能。

人工智能是研究使计算机来模拟人的某些思维过程和智能行为,比如学习、推理、思考、规划等方式,主要包括通过计算机实现智能的原理或者制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能涉及计算机科学、心理学、哲学和语言学等多门学科,其范围已远远超出了计算机科学的范畴,成为一门综合学科。人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象、灵感思维才能促进人工智能的突破性的发展。数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具。数学进入人工智能学科,它们将互相促进而更快地发展。数学给予人工智能学科计算方法和逻辑思维,人工智能学科给数学计算和发展提供了可靠的未来。

人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行:一是结构模拟,仿照人脑的结构机制,制造出类似人脑一样思考方式的.机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟思考。现代电子计算机的产生便是对人脑思维功能的模拟,是在对人脑思维的信息过程的模拟过程中产生的。人工智能的起源最早要从1955年的一个叫做学习机讨论会的小会开始,然后就是公认的1956年达特茅斯会议,这是人工智能史上最重要的里程碑,被公认为人工智能之开始。达特茅斯会议中的讨论预示了人工智能随后几十年关于“结构与功能”两个阶级,两条路线的斗争。他们讨论着一个主题:用机器来模仿人类学习以及其他方面的智能。他们公布了的“逻辑理论家”是当时唯一可以工作的人工智能软件,引起了会议代表极大的兴趣与关注。会议的召集人麦卡锡给这个活动起了个别出心裁的名字:人工智能夏季研讨会。这是人工智能一词正式在学术会议中亮相,而1956年也就成为了人工智能元年。虽然之后一段时间内对人工智能并没有大规模投入资金和大量科研人员,但是毋庸置疑的打开了新发展的大门,为后来的道路提供了方向和目标。

语言学与人工智能的心得体会【第四篇】

在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。

在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。

近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。

分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。

分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。

mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动。

态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。

2、计算智能与进化计算。

计算智能(computingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。

进化计算(evolutionarycomputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。

达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。

直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。

3、数据挖掘与知识发现。

知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。

从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。

机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。

比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的。

coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。

4、人工生命。

人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。

人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。

人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。

人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。

(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。

(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。

(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。

(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。

(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。

(6)基本了解人工智能程序设计的语言和工具。

对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给分享的“语言学与人工智能的心得体会范文 人工智能的心得体会范文【参考5篇】”,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。

人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。

当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。

(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。

(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。

(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。

(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。

语言学与人工智能的心得体会【第五篇】

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

相关推荐

热门文档

48 1809176