会计师数据分析师工作总结范文报告【精彩10篇】
【请您参阅】下面供您参考的“会计师数据分析师工作总结范文报告【精彩10篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
会计师数据分析师工作总结报告【第一篇】
1、热爱并忠诚于人民的教学事业,教学态度认真,教风扎实,严格遵守学校的规章制度。
2、认真备课。
不但备学生们而且备教材备教法,根据教材内容及学生们的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生们注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
3、增强上课技能,提高教学质量。
使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生们的积极性,加强师生交流,充分体现学生们的主作用,让学生们学得容易,学得轻松,学得愉快。
注意精讲精练,在课堂上老师讲得尽量少,学生们动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生们学习需求和学习能力,让各个层次的学生们都得到提高。现在学生们普遍反映喜欢上课数学课。
每周坚持集体备课,保证每次都有收获,真正为提高高一级的数学成绩而努力。要求所有老师用电脑备教案,尽量并且实现资源共享共同研究、共同进步。在教学上,坚持教学研究,共同讨论,同时,多听课,学习别人的优点,克服自己的不足。
4、在课堂授课中,坚持启发式教学,坚持向45分钟要质量。
以学生们为主体,以训练为主线。教学过程重视知识与技能,学习过程和方法,情感态度与价值观,培养学生们自主学习,合作学习,探究性学习的精神。
5、真批改作业:布置作业做到精读精练。
会计师数据分析师工作总结报告【第二篇】
职责:
1、负责新媒体广告投放效果分析工作;。
2、负责公司会员客户各种属性与行为的分析工作;。
3、负责会员销售中心会员数据的挖掘、分配、与回收工作;。
4、负责电商部各种销售日报、月服的处理;。
5、完成上级领导交办的其他工作。
岗位要求:
1、数学、统计、计算机等相关专业本科以上学历,***有一年以上相关工作经验;。
2、有良好的沟通技巧与语言表达能力;。
3、掌握用其本sql语句的使用,可以用sql进行数据库相关查询;。
4、熟练操作office软件,熟练掌握excel表的大部分统计功能。
会计师数据分析师工作总结报告【第三篇】
1、主要协助分析师工作,包括数据整理、分析,行情分析、传达,技术分析、授课。
2、协助部门主管处理部门的日常事务;
3、协助部门部门做销售团队的数据统计及分析;
4、负责部门文化的建设和传播工作;
5、处理上级安排的其他工作。
1、喜欢金融,希望进入金融行业,实现财富自由的梦想;
2、需要具有良好的学习、沟通、分析判断、执行能力和团队协作精神;
3、有较强的人际沟通能力,文字组织能力和口头表达能力;
4、具备往管理岗位晋升的野心;
会计师数据分析师工作总结报告【第四篇】
数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。
数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。
其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。
那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。
常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。
统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。
另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括apriori等关联规则、聚类算法等。
另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水*、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。
统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。
自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。
会计师数据分析师工作总结报告【第五篇】
随着2022年钟声的临近,2021年的工作即将进入尾声。在这个特殊的时点,总结过去的工作,计划未来,就显得尤为重要!在过去的时间里,本人在公司各级领导的正确领导下,在同事们的团结合作和关心帮助下,较好地完成了2021年的各项工作任务,在工作能力和思想政治方面都有了更进一步的提高。现将2021年取得的成绩和存在的不足总结如下:
一、思想政治表现、品德修养及职业道德方面。
2021年以来,本人认真遵守劳动纪律,按时出勤,有效利用工作时间;坚守岗位,需要加班完成工作按时加班加点,保证工作能按时完成。爱岗敬业,具有强烈的责任感和事业心。积极主动学习专业知识,工作态度端正,认真负责地对待每一项工作。
二、工作能力和其它方面。
我的工作岗位是数据与产品支持,准确和效率一直都是我的工作宗旨。工作内容大体分为四块:
1.在月初关账期间,要保证各地提报的非派费用和仓租、外包工、叉车租金分摊的准确性与及时性,同时不仅需要审查数据内容填写的规范性,还需要确认各地是否已经提报。汇总完数据后要进行初步分析,将不符合提报要求的费用提取出来并联系提报人进行确认,并判断是否应该提报。将数据提交给结算部门后,结算在核销的时候会有疑问,这些疑问也需要我来进行跟进与反馈。
2.关账结束后要进行合同外议价的分析,这部分分析分为同一线路同一承运商派车次数大于3次的分析和有合同但走合同外议价的分析两部分,前者分析的目的是为了考虑是否要与此线路签合同,而后者的分析目的是更新完善合同的报价。
3.结束合同外议价的分析工作,则需要进行单个to负毛利的分析,该分析数据主要来源于工盘,包括收入明细,成本明细,派车分摊和租车分摊。分析完成需要将结果发给对应的运输经理,查明产生亏损的原因,并提出合理的建议。
4.在以上三部分工作内容如期进行的时候,全月不定时穿插项目初步分析,此部分内容主要使用者为项目经理、客户经理等。
三、存在的不足。
总结2021来的工作,虽然取得了一定的成绩,自身也有了很大的进步,但是还存在着以下不足:
一是工作方式上还只是按部就班,虽然融入了一些自己的看法和改进,但还未提高到更高的层面,没有从管理层的角度去看待问题。
二是由于工作性质,与区域的负责人和调度员会有频繁的联系,但还不能很好的沉着面对,所以沟通交流能力还需要进一步的加强。
三是知识储备还不够,还需要更广泛的学习与增长经验,成为多方面的人才。
2022年我将进一步发扬优点,改进不足,拓宽思路,求真务实,全力做好本职工作。打算从以下几个方面开展工作:
一是加强工作统筹。根据公司领导的年度工作要求,对全年的工作进行具体谋划,明确内容、时限和需要达到的目标,把各项工作有机地结合起来,理清工作思路,提高办事效率,增强工作实效。
二是加强工作作风培养。始终保持良好的精神状态,发扬吃苦耐劳、知难而进、精益求精、严谨细致、积极进取的工作作风。
三是作为运输总部与区域对接人员之一,一言一行都代表着公司的形象。不仅在工作上必须做到精确、严谨,而且在行为品德上要严格要求自己,树立良好的个人形象。所以我要加倍努力的工作为了公司的发展做出自己的贡献。
会计师数据分析师工作总结报告【第六篇】
虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。
2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力。
这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。
数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一步的改进,找到机会点的人。往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。
4、数据应用师:将数据还原到产品中,为产品所用。
5、数据规划师:走在产品前面,让数据有新的价值方向。
1.标准报表。
回答:发生了什么?什么时候发生的?
示例:月度或季度财务报表。
我们都见过报表,它们一般是定期生成,用来回答在某个特定的领域发生了什么。从某种程度上来说它们是有用的,但无法用于制定长期决策。
2.即席查询。
回答:有多少数量?发生了多少次?在哪里?
示例:一周内各天各种门诊的病人数量报告。
即席查询的最大好处是,让你不断提出问题并寻找答案。
3.多维分析。
回答:问题到底出在哪里?我该如何寻找答案?
示例:对各种手机类型的用户进行排序,探查他们的呼叫行为。
通过多维分析(olap)的钻取功能,可以让您有初步的发现。钻取功能如同层层剥笋,发现问题所在。
4.警报。
回答:我什么时候该有所反应?现在该做什么?
示例:当销售额落后于目标时,销售总监将收到警报。
5.统计分析。
回答:为什么会出现这种情况?我错失了什么机会?
示例:银行可以弄清楚为什么重新申请房贷的客户在增多。
这时您已经可以进行一些复杂的分析,比如频次分析模型或回归分析等等。统计分析是在历史数据中进行统计并总结规律。
6.预报。
回答:如果持续这种发展趋势,未来会怎么样?还需要多少?什么时候需要?
示例:零售商可以预计特定商品未来一段时间在各个门店的需求量。
预报可以说是最热门的分析应用之一,各行各业都用得到。特别对于供应商来说,能够准确预报需求,就可以让他们合理安排库存,既不会缺货,也不会积压。
7.预测型建模。
回答:接下来会发生什么?它对业务的影响程度如何?
示例:酒店和娱乐行业可以预测哪些vip客户会对特定度假产品有兴趣。
如果您拥有上千万的客户,并希望展开一次市场营销活动,那么哪些人会是最可能响应的客户呢?如何划分出这些客户?哪些客户会流失?预测型建模能够给出解答。
8.优化。
回答:如何把事情做得更好?对于一个复杂问题来说,那种决策是最优的?
示例:在给定了业务上的优先级、资源调配的约束条件以及可用技术的情况下,请您来给出it平台优化的最佳方案,以满足每个用户的需求。
优化带来创新,它同时考虑到资源与需求,帮助您找到实现目标的最佳方式。
会计师数据分析师工作总结报告【第七篇】
4、熟悉各种推广方式及精通营销规则;’。
5、有较强的组织执行策划能力,精通竞价排名规则。
1、有较强的需求分析能力、逻辑推理能力、沟通协调能力;
2、熟悉公司运作,对站外推广有独到的见解。
3、行业信息敏感度强,有媒体资源,懂ps,懂网页代码及软文协作的优先录用。
4、具备良好的职业道德素养。
会计师数据分析师工作总结报告【第八篇】
6、配合销售人员进行市场营销和客户培训。
1、中专及以上学历,经济、金融等相关专业;
2、具有金融分析投资经验,有分析师执业资格者优先;
3、具有丰富的金融基础理论知识,善于进行行业研究和挖掘;
4、熟悉外汇股票公司决策流程和各个交易管理系统;
5、具有较强的逻辑思维能力、创新和钻研精神;
6、具有很强的文字表达能力和金融分析能力;
7、具有很强的工作责任心和团队精神。
会计师数据分析师工作总结报告【第九篇】
但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
国内某大型招聘平台给出的数据分析师平均薪酬为:9724(取自1139份样本),且北京、上海、广州、深圳、杭州、南京、武汉、成都、长沙为大数据分析师需求量前十的城市。
会计师数据分析师工作总结报告【第十篇】
职责:
2、销量核查,参与奖金方案设计、计算与分析;。
3、拜访系统建立更新和维护,跟进拜访信息的收集和提交,提升信息完成质量;。
4、运用统计分析工具对运营过程的关键价值因素进行评价分析;。
6、参与年度销售指标与人员编制预算,负责跟踪并反馈销售队伍绩效分析,跟进销售部门的kpi管理。
任职要求:
1、大专及以上学历,数学、统计学、计算机应用等相关专业优先;。
2、熟悉数据分析方法及基础的业务知识,具备一定的项目管理能力佳;。
5、良好的沟通能力和团队协作精神,工作细致,责任心强,具有较强的抗压能力。