首页 > 工作范文 > 范文大全 >

实用数学知识点归纳图 初三数学知识点总结样例(通用8篇)

网友发表时间 1753565

数学知识点归纳图【第一篇】

3、一个数与0相加,仍得这个数。

有理数加法的运算律

1、加法的交换律:a+b=b+a;

2、加法的结合律:(a+b)+c=a+(b+c)

有理数减法法则

减去一个数,等于加上这个数的相反数;即a—b=a+(—b)

有理数乘法法则

1、两数相乘,同号为正,异号为负,并把绝对值相乘;

2、任何数同零相乘都得零;

3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

数学知识点归纳图【第二篇】

1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。

2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。

3、课后复习:通预习一样,也是行之有效的方法。

4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

6、建立纠错本:把经常出错的.题目集中在一起。

7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。

数学知识点归纳图【第三篇】

1、买文具---(小面额的人民币)。

2、买衣服---(大面额的人民币)。

3、小小商店---(进行有关钱款的简单计算)。

买文具(小面额的人民币)。

1、认识各种小面额的人民币。

2、体会小面额人民币之间的换算关系。

3、从实际问题中理解“付出的钱、应付的钱、应找回的钱”三者之间的关系。

4、在购物情景中进行有关钱款的简单计算。

买衣服(大面额的人民币)。

1、让学生在活动中认识大面额的人民币,能从相同点和不同点上辨认。

2、会计算大面额人民币之间的换算。

3、在购物活动中体会大面额人民币的作用,运用人民币的兑换知识,初步掌握付钱的方法。

小小商店(进行有关钱款的简单计算)。

1.在购物情景中会进行有关钱款的简单计算。

2.通过购物中的活动,了解付费的方式是多样化的。

3.通过购物的活动,巩固复习100以内的加减法计算。

4.购物中能解决一些简单的实际问题。

数学知识点归纳图【第四篇】

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。

(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。

判定两个平面垂直的方法:(1)利用定义。

(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

夹在两个平行平面之间的平行线段相等。

经过平面外一点有且仅有一个平面与已知平面平行。

两条直线被三个平行平面所截,截得的对应线段成比例。

数学知识点归纳图【第五篇】

基本事件的定义:

一次试验连同其中可能出现的每一个结果称为一个基本事件。

等可能基本事件:

若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。

古典概型:

如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件的发生都是等可能的;

那么,我们称这个随机试验的概率模型为古典概型。

古典概型的概率:

如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件a包含了其中m个等可能基本事件,那么事件a发生的概率为。

古典概型解题步骤:

(1)阅读题目,搜集信息;

(2)判断是否是等可能事件,并用字母表示事件;

(3)求出基本事件总数n和事件a所包含的结果数m;

(4)用公式求出概率并下结论。

求古典概型的概率的`关键:

求古典概型的概率的关键是如何确定基本事件总数及事件a包含的基本事件的个数。

数学知识点归纳图【第六篇】

:正、负数的概念:我们把像3、2、+、%这样的数叫做正数,它们都是比0大的数;像-3、-2、-、-%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

:绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

:相反数的概念:

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

:有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

:有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(3)一个数与0相加,仍得这个数.

:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

:有理数减法法则:减去一个数,等于加上这个数的相反数。

:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

数学知识点归纳图【第七篇】

以下知识点需要我们去理解,记忆。1、数学所说的直线是无限延伸的,没有起点,也没有终点。

2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。

3、公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

4、过不在同一直线上的三点,有且只有一个平面。

5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

6、平行于同一条直线的两条直线平行。

7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。

8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。

9、做位置关系的题目,可以借助实物,直观理解。

一、直线与方程考试内容及考试要求。

考试内容:

1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;。

2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;。

考试要求:

1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直。

线的方程判断两条直线的位置关系。

数学知识点归纳图【第八篇】

2、从个位加起;

3、个位满10向十位进1。

(二)笔算两位数减法,要记三条。

2、从个位减起;

3、个位不够减从十位退1,在个位加10再减。

(三)混合运算计算法则。

1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

3、算式里有括号的要先算括号里面的。

(四)四位数的读法。

1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;

2、中间有一个0或两个0只读一个“零”;

3、末位不管有几个0都不读。

(五)四位数写法。

1、从高位起,按照顺序写;

2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六),四位数减法也要注意三条。

2、从个位减起;

3、哪一位数不够减,从前位退1,在本位加10再减。

(七)一位数乘多位数乘法法则。

1、从个位起,用一位数依次乘多位数中的每一位数;

2、哪一位上乘得的积满几十就向前进几。

(八)除数是一位数的除法法则。

2、除数除到哪一位,就把商写在那一位上面;

3、每求出一位商,余下的数必须比除数小。

(九)一个因数是两位数的乘法法则。

1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

3、然后把两次乘得的数加起来。

(十)除数是两位数的除法法则。

1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,

2、除到被除数的哪一位就在哪一位上面写商;

(十一)万级数的读法法则。

1、先读万级,再读个级;

2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

(十二)多位数的读法法则。

1、从高位起,一级一级往下读;

2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

(十三)小数大小的比较。

比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

(十四)小数加减法计算法则。

计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

(十五)小数乘法的计算法则。

计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(十六)除数是整数除法的法则。

除数是整数的小数除法,按照整数除法的.法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

(十七)除数是小数的除法运算法则。

除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(十八)解答应用题步骤。

2、确定每一步该怎样算,列出算式,算出得数;

3、进行检验,写出答案。

(十九)列方程解应用题的一般步骤。

1、弄清题意,找出未知数,并用x表示;

2、找出应用题中数量之间的相等关系,列方程;

3、解方程;

4、检验、写出答案。

(二十)同分母分数加减的法则。

同分母分数相加减,分母不变,只把分子相加减。

(二十一)同分母带分数加减的法则。

带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

(二十二)异分母分数加减的法则。

异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

(二十三)分数乘以整数的计算法则。

分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

(二十四)分数乘以分数的计算法则。

分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

(二十五)一个数除以分数的计算法则。

一个数除以分数,等于这个数乘以除数的倒数。

(二十六)把小数化成百分数和把百分数化成小数的方法。

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

把百分数化成小数,把百分号去掉,同时小数点向左移动两位。

(二十七)把分数化成百分数和把百分数化成分数的方法。

把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

多看例题好处。

在学习数学的过程中,一定要多看例题,细心的同学会发现,老师在讲解基础内容之后,总是给我们补充一些课外例题或者习题,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻。

1、做好预习:

单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

2、认真听课:

听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

3、认真解题:

课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

4、及时纠错:

课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

相关推荐

热门文档

48 1753565