首页 > 工作范文 > 范文大全 >

2023年高一数学函数知识总结实用(优推4篇)

网友发表时间 670229

【导读预览】此篇优秀范文“2023年高一数学函数知识总结实用(优推4篇)”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

高一数学函数知识总结【第一篇】

不知道大家有没有过这样的情况:在遇到一个难题的时候,绞尽脑汁的去想解题方法,仍旧解不出来,参照答案之后,才发现,原来是某某定理理解的不到位,某某公式记得不全面。

将笔记上的重点知识标记出,进行一下系统的记忆之后,可以对一个的找一些专题进行一下系统的训练,最好多找一些综合题,因为综合题考查的知识点较多,更能够发现自己的薄弱项。从而进行强化,让自己无懈可击。

同学们可以跟自己的同桌或者同学进行合作,互相出题为难对方,一个会出题的人必定会解题,如果题出的非常严谨,证明你已经升华了。

锻炼出题的能力也可以培养自己对知识、对考试的不同认识,让自己站在出题老师的角度上去思考一道题的解题方法与技巧,视野会更加的开阔。

高一数学函数知识总结【第二篇】

2、函数的概念

3、函数的三要素:定义域、值域和对应法则。

4、两个函数能成为同一函数的条件

当且仅当两个函数的定义域和对应法则完全相同时,这两个函数才是同一函数。

5、区间的概念和记号

6、函数的表示方法

函数的表示方法有三种。(1)解析法(2)列表法(3)图像法

7、分段函数

本节是段考和高考必不可少的考查部分,多以选择题和填空题的形式出现。段考中常考查函数的定义域、值域、对应法则、同一函数、函数的解析式和分段函数。高考中可以和高中数学的大部分章节知识联合考查,但是难度不大,属于容易题。多考查函数的定义域、函数的表示方法和分段函数。

1、映射是一种特殊的函数,映射中的集合a,b可以是数集,也可以是点集或其他集合,这两个集合有先后顺序。a到b的映射与b到a的映射是不同的。而函数是数集到数集的映射,所以函数是特殊的映射,但是映射不一定是函数。

2、函数的问题,要遵循“定义域优先”的原则。无论是简单的函数,还是复杂的函数,无论是具体的函数,还是抽象的函数,必须优先考虑函数的定义域。之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便。

3、分段函数是一个函数,而不是几个函数。分段函数书写时,注意格式规范,一般在左边的区间写在上面,右边的区间写在下面,每一段自变量的取值范围的交集为空集,所有段的自变量的取值范围的并集是函数的定义域。

高一数学函数知识总结【第三篇】

名称定义

(1)化归法;(2)图象法(数形结合),

(3)函数单调性法,

定义域、对应法则、值域是函数构造的三个基本元件。平时数学中,实行定义域优先的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的.探究,造成了一手硬一手软,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

范围与值域是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。值域是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而范围则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:值域是一个范围,而范围却不一定是值域。

-->

高一数学函数知识总结【第四篇】

本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

2、用函数解应用题的基本步骤是:

(1)阅读并且理解题意。(关键是数据、字母的实际意义);

(2)设量建模;

(3)求解函数模型;

(4)简要回答实际问题。

常见考法:

本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

误区提醒:

1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

典型例题

例1:

(1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。

(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。

例2:

某民营企业生产a,b两种产品,根据市场调查和预测,a产品的利润与投资成正比,其关系如图1,b产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

(1)分别将a,b两种产品的利润表示为投资的函数,并写出它们的函数关系式。

(2)该企业已筹集到10万元资金,并全部投入a,b两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。

相关推荐

热门文档

48 670229