首页 > 工作范文 > 范文大全 >

实用比例的意义教学设计及反思(5篇)

网友发表时间 1114886

【导读预览】此篇优秀范文“实用比例的意义教学设计及反思(5篇)”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

比例的意义教学设计及反思【第一篇】

知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

重点: 理解比例的意义和基本性质。

难点:判断两个比是否成比例。

1. 复习导入:

(1)什么叫做比?

两个数相除又叫做两个数的比。

(2)什么叫做比值?

比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:

12:16= 4、5:2、7= 10:6=

谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:

一辆货车运输大麦芽情况

第一天 第二天

运输次数 2 4

运输量(吨) 16 32

根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

谈话:谁来交流?跟大家说一下你的问题是什么?

学生可能出现以下的问题:

货车第一天的运输量与运输次数的比是多少? (16 : 2)

货车第二天的`运输量与运输次数的比是多少?(32 :4)

货车第二天的运输量与第一天运输量的比是多少?(32 :16)

(师根据学生的回答,将答案一一贴或写于黑板)

2 :16; 4 :32; 16 :2; 32 :4;

16 :32; 2 :4; 32 :16; 4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

思考:这个比值所表示的实际意义是什么?(每次的运输量)

既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

2、比和比例有什么区别?

4︰6

比例

2︰3=4︰6

3.判断下面两个比能否组成比例?

6∶9 和 9∶12

总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

5、学生先独立思考,再小组交流,探究规律。

出示研究方案:

①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?

6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?

(2)还有其他发现吗?

(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:

应用比例的基本性质,判断下面两个比能不能组成比例.

6∶3 和 8∶5

方法:a、先假设这两个比能组成比例

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

1、判断下面每组中两个比能否组成比例?

1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

让学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:

2:1=4:( ) :2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4 和 6

因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

练习时,给学生充足的时间让学生独立完成,然后交流沟通。

在这节课中你又有什么新的收获?

比例的意义教学设计及反思【第二篇】

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

重点:理解反比例函数意义,确定反比例函数的表达式.

难点:反比例函数表达式的确立.

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式

14631000(2)y= tx

k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

举例:下列属于反比例函数的是

(1)y= (2)xy=10 (3)y=k-1x (4)y= -

此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

已知y与x成反比例,则可设y与x的函数关系式为y=

k x?1

k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的`是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4

(1)求出y和x之间的函数解析式

(2)求当x=时y的值

解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

比例的意义教学设计及反思【第三篇】

义务教育课程标准实验教科书数学六年级下册p45练习十的第5—8题

1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

2、让学生在经历探究的过程中,体验学习数学的快乐。

学会解比例。

掌握解比例的书写格式。

在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数x来表示比例中的未知项,列出比例式。

在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。

一、练习引入

1、小练笔:

在()里填上合适的数。

5:4=():12

4:()=():6

2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?

3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。学生练习

学生回顾比例的基本性质

二、探索新知

出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是厘米,你能求他的宽吗?

(1)读题审题,理解题意

老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例

(2)引导分析,写出比例

如果把放大后照片的宽设为x厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

师介绍:“像上面这样求比例中的未知项,叫做解比例。

(3)找到依据,变形解答

讨论:怎样解比例?根据是什么?

思考:“根据比例的基本性质可以把比例变成什么形式?”

教师板书:6x=×4。“这变成了什么?”(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数x的值。

(4)、板书过程,总结思路

师生把解比例的过程完整地写出来。指名板书。

师问:第一步计算的依据是什么?

师生总结解比例的`过程。

提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

(5)、练习提高,再说思路

做“试一试”,学生独立完成,再说说解题思路。

学生读题,分析题意

学生写出含有未知数的比例式

学生小组交流,大组汇报

学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。

学生独立练习,小组说明思路。

三、巩固练习

1、做“练一练”

2、做练习十第6、7题。

3、做练习十第8题

学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。

学生独立审题并解题。讲评时重点指导学生解决第(2)问。

四、比较提高。

1、通过本课的学习,你有哪些收获?

2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。

五、作业练习九第5、6题。

比例的意义教学设计及反思【第四篇】

九年义务教育六年制小学数学第十二册p62——63

教学目:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

认识正比例的意义

:掌握成正比例量的变化规律及其特征

:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的`能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

四、总结回顾评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

比例的意义教学设计及反思【第五篇】

这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。

1、本班现有学生92人,男生49人,女生43人。

2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。

3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的'密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

1、知识与技能:理解比例的意义,认识比例各部分的名称。

2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的意义,判断两个比能否组成比例,会组比例。

3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

1、掌握比例的意义。

2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

3、能根据一个比例写几个不同的比例。

教学环节 教师活动 预设学生行为 设计意图

1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的比,这些比表示的意义是什么?

2、怎样求比值?求下面各比的比值,你发现了什么?

20∶∶∶10生回答。

学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。

揭示

课题这节课我们在比的知识基础上,进一步学习新知识。

揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。

探究

比例的意义

1、课件出示

例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。

列表如下:

竹竿长(m)23...... 影子长(m)69......

2、你能写出多少个有意义的比?并求出它们的比值。

3、观察这些比,把能用等号连接的比用等号连接起来。

4、教师板书

3∶2=9∶6

2∶6=3∶9

强调:这些都是比例。

引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。

5、2∶9和3∶6能组成比例吗?你是怎么知道的?

6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”

1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。

2、学生试写:

2:3=6:9

2:6=3:9

3、学生合作探究:什么是比例?

4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。

1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。

2、让学生分享在主动参与、探究中获取知识的愉悦心情。

3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。

认识比例的各个项

1、课件出示:在一个比例中两端的两项叫外项,中间的两项叫内项。

要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。

介绍分数形式的比例写法。

学生小组合作探究,找出3∶2=9∶6和2:6=3:9

的内项和外项。加深认识,学以致用。

1、请同学们用比例的意义判断一下,0。4∶25能否和1。2∶75组成比例?为什么?

2、说一说比和比例有什么区别。

3、在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。

4、用下面的四个数组成比例:2,3,4和6(能组几个就组几个)。你能否写出几个不同的比例?

5、下面的四个数可以组成比例吗?若不能,改变其中的任何一个数,使其能组成比例。2、3、4、5试试看,相信你一定能完成?

1、学生独立完成。

2、汇报答题情况。

检测学生学习效果。

1、a÷b=a:b比就表示两个数相除,它们的商叫比值,应用比的意义可以求比值。

2、比例a:b=c:d表示两个比相等的式子,叫做比例。应用比例的意义可以判断两个比是否可以组成比例。学生自己说出几个不同的比和比例,对比理解。加强新旧知识的联系和区别,巩固新知识。

相关推荐

热门文档

48 1114886