2023年高一数学必修一教案最新4篇
【导读预览】此篇优秀范文“2023年高一数学必修一教案最新4篇”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!
高一数学必修一教案【第一篇】
一、自主学习
1. 阅读课本 练习止.
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3. 完成 练习
4. 小结.
二、方法指导
一、提问题
1. 对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明.
二、变题目
1. 试求下列函数的反函数:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函数的定义域:
(1) ; (2) ; (3) .
3. 已知 则 = ; 的定义域为 .
1.对数函数的'有关概念
(1)把函数 叫做对数函数, 叫做对数函数的底数;
(2)以10为底数的对数函数 为常用对数函数;
(3)以无理数 为底数的对数函数 为自然对数函数.
2. 反函数的概念
3. 与对数函数有关的定义域的求法:
4. 举例说明如何求反函数.
一、课外作业: 习题3-5 a组 1,2,3, b组1,
二、课外思考:
1. 求定义域: .
2. 求使函数 的函数值恒为负值的 的取值范围.
高一数学必修一教案【第二篇】
教学准备
教学目标
教学重难点
教学难点:平行向量、相等向量和共线向量的区别和联系.
教学过程
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材p74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
这时各向量的终点之间有什么关系?
课后小结
1、描述向量的两个指标:模和方向.
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
高一数学必修一教案【第三篇】
一、自主学习
1.阅读课本练习止。
2.回答问题:
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3.完成练习。
4.小结。
二、方法指导
1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
2.本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开,同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质。
一、提问题
1.对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明。
二、变题目
1.试求下列函数的反函数:
(1);(2);(3);(4)。
2.求下列函数的定义域:
(1);(2);(3)。
3.已知则=;的定义域为。
1.对数函数的有关概念。
(1)把函数叫做对数函数,叫做对数函数的底数。
(2)以10为底数的对数函数为常用对数函数。
(3)以无理数为底数的对数函数为自然对数函数。
2.反函数的概念。
在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。
3.与对数函数有关的定义域的求法:
4.举例说明如何求反函数。
一、课外作业:习题3-5a组1,2,3,b组1,
二、课外思考:
1.求定义域:
2.求使函数的函数值恒为负值的的取值范围。
高一数学必修一教案【第四篇】
教学准备
教学目标
1、理解平面向量的坐标的概念;
2、掌握平面向量的坐标运算;
3、会根据向量的坐标,判断向量是否共线.
教学重难点
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程
平面向量基本定理:
什么叫平面的一组基底?
平面的基底有多少组?
引入:
1.平面内建立了直角坐标系,点a可以用什么来
表示?
2.平面向量是否也有类似的表示呢?