首页 > 工作范文 > 范文大全 >

分数除以分数教学设计一等奖【汇集5篇】

网友发表时间 647360

【导读预览】此篇优秀范文“分数除以分数教学设计一等奖【汇集5篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

分数除以分数教学设计一等奖【第一篇】

1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2、理解和掌握分数的基本性质。

3、较好的实现知识教育与思想教育的有效结合。

教学重点:

理解和掌握分数的基本性质。

教学难点:

能熟练、灵活地运用分数的基本性质。

教学过程:

一、创设情景

师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。

二、新授

师:同学们想了很多好的方法,哪个小组愿意汇报一下?

生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)

师:我们发现的这个规律,就是分数的基本性质。

同学们现在小组内总结一下,什么是分数的基本性质?

(学生认真讨论)

师:同学们汇报一下你们的讨论结果。

三、自主练习、巩固提高

课本第80页1、2、3、题。

其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。

第2题二生爬黑板板演,第3、4题学生自做。师巡视指导。

课堂小结:

分数除以分数教学设计一等奖【第二篇】

(一)知识与技能

在折一折、涂一涂、算一算等活动中理解分数除以整数的实际意义;探索并理解分数除以整数的计算方法,能正确地进行计算。

(二)过程与方法

结合具体的问题情境,经历分数除法计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。

(三)情感态度和价值观

在数学学习过程中培养分析能力、知识的迁移能力、推理能力。

教学重点:探究并得出分数除以整数的计算方法,能比较熟练地进行计算。教学难点:对分数除以整数的算理的理解。

多媒体课件,折纸。

(一)引入操作情境,尝试计算教学教材第30页例1。

教师:把一张纸的平均分成2份,每份是这张纸的几分之几?

教师:你会列式吗?(启发学生列出算式。)

1.把平均分成2份,就是把4个平均分成2份,1份就是2个,就是;用算式表示是:。

2.把平均分成2份,每份就是的,就是;用算式表示是:。

设计意图该阶段的学生已经有一定的自主探究能力,所以采用先让学生尝试的方法,有意识地唤醒学生对旧知的回忆,让学生从已有的知识经验入手,把自己和同伴的真实想法进行交流,充分体现学生的认知基础,有助于理解分数除以整数的算理。

(二)借助直观,实现沟通

涂上阴影,然后再把阴影部分平均分成2份。)

预设:学生可能会做出如下两种图示:

教师引导学生交流:这两种图示分别对应着上面哪种算法?指导学生阅读教材第30页,将“图”和“式”对照起来进行分析和说理。

结合图(1),引导学生说理:把x平均分成2份,就是把4个平均分成2份,1份就是2个,就是。

结合图(2),引导学生说理:把x平均分成2份,每份就是的,就是。

教师:同学们说得很好!把一个数平均分成几份,实际上就是求这个数的几分之一是多少。也就是说,分数除法和分数乘法有着密切的联系,分数除法可以转化为分数乘法来计算。

设计意图分数除法计算方法的探索与理解,历来是教学的一个难点。结合分数的意义和直观图来沟通分数除法和分数乘法的联系,是得出分数除以整数一般算法的关键步骤,也是理解算理的基础。根据小学生的思维特点,采用手脑并用、数形结合的策略,在教师的指导下进行有效的操作,有意识地将“图”和“式”对照起来进行分析和说理,帮助学生建立图形语言和数字语言的联系,有效地降低难点。通过操作,直观地体会分数除以整数的实际意义。在恰当的时机,引导学生进行文本阅读,整体感知算法的推导过程。

(三)体验冲突,发现一般规律

教师:把一张纸的平均分成3份,每份是这张纸的几分之几呢?

教师:你会用刚才的方法说明计算结果吗?

预设:通过前面的操作和交流,学生应该能领悟到分子不能被除数整除该选择哪种图示,并能说清:把平均分成3份,每份就是的,即。

1.分数除以整数,如果分子能被除数整除,那么计算方法是分子除以除数的商作为分子,分母不变;如果分子不能被除数整除,那么转化为求这个数的几分之一来计算。

2.把一个数平均分成几份,就是求这个数的几分之一是多少,也就是都可以转化成乘法来计算,相比这种方法适用的范围更广。

教师:同学们说得很好!看来分数除法可以转化为以前我们学过的分数乘法来计算。

设计意图通过交流,诱导学生经历由特殊到一般的探索过程,从中悟出分数除以整数的算理:把一个数平均分成几份,就是求这个数的几分之一是多少。初步体会新旧知识之间、方法之间的转化与统一,比较自然地渗透转化的思想。

(四)应用规律,尝试练习

教师:请你独立思考并完成教材第30页“做一做”。

设计意图对关键步骤进行针对性训练,使学生进一步理解分数除以整数的实际意义,即:把一个数平均分成几份,就是求这个数的几分之一。进一步体会把分数除法转化为乘法具有普适性。

(五)巩固练习,熟练算法

1.教师:请你完成教材第34页练习七第

1、2题。

先尝试独立填空,然后组织交流,让学生明白分数除法和分数乘法的互逆关系。

2.教师:请你完成教材第34页练习七第4题。

左边的三个算式的分子都是3的倍数,所以可以用分子除以3,也可以转化为乘法;右边一组的分子都不是3的倍数,只能用一般算法。通过进一步的比较和练习,体会算法的灵活性和一般方法的普适性。

3.教师:下面让我们一起来解决一个实际问题,请你完成教材第34页练习七第3题。

引导学生可以画图来验证自己的计算结果,也可转化为小数来验证自己的计算结果,培养学生的反思意识。

(六)全课总结,交流收获

教师:今天我们共同学习了什么知识?你有什么收获?

分数除以分数教学设计一等奖【第三篇】

(一)知识与技能

在折一折、涂一涂、算一算等活动中理解分数除以整数的实际意义;探索并理解分数除以整数的计算方法,能正确地进行计算。

(二)过程与方法

结合具体的问题情境,经历分数除法计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。

(三)情感态度和价值观

在数学学习过程中培养分析能力、知识的迁移能力、推理能力。

二、教学重难点

教学重点:探究并得出分数除以整数的计算方法,能比较熟练地进行计算。教学难点:对分数除以整数的算理的理解。

三、教学准备

多媒体课件,折纸。

四、教学过程

(一)引入操作情境,尝试计算教学教材第30页例1。

教师:把一张纸的平均分成2份,每份是这张纸的几分之几?

教师:你会列式吗?(启发学生列出算式。)

1.把平均分成2份,就是把4个平均分成2份,1份就是2个,就是;用算式表示是:。

2.把平均分成2份,每份就是的,就是;用算式表示是:。

设计意图该阶段的学生已经有一定的自主探究能力,所以采用先让学生尝试的方法,有意识地唤醒学生对旧知的回忆,让学生从已有的知识经验入手,把自己和同伴的真实想法进行交流,充分体现学生的认知基础,有助于理解分数除以整数的算理。

(二)借助直观,实现沟通

涂上阴影,然后再把阴影部分平均分成2份。)

预设:学生可能会做出如下两种图示:

教师引导学生交流:这两种图示分别对应着上面哪种算法?指导学生阅读教材第30页,将“图”和“式”对照起来进行分析和说理。

结合图(1),引导学生说理:把x平均分成2份,就是把4个平均分成2份,1份就是2个,就是。

结合图(2),引导学生说理:把x平均分成2份,每份就是的,就是。

教师:同学们说得很好!把一个数平均分成几份,实际上就是求这个数的几分之一是多少。也就是说,分数除法和分数乘法有着密切的联系,分数除法可以转化为分数乘法来计算。

设计意图分数除法计算方法的探索与理解,历来是教学的一个难点。结合分数的意义和直观图来沟通分数除法和分数乘法的联系,是得出分数除以整数一般算法的关键步骤,也是理解算理的基础。根据小学生的思维特点,采用手脑并用、数形结合的策略,在教师的指导下进行有效的操作,有意识地将“图”和“式”对照起来进行分析和说理,帮助学生建立图形语言和数字语言的联系,有效地降低难点。通过操作,直观地体会分数除以整数的实际意义。在恰当的时机,引导学生进行文本阅读,整体感知算法的推导过程。

(三)体验冲突,发现一般规律

教师:把一张纸的平均分成3份,每份是这张纸的几分之几呢?

教师:你会用刚才的方法说明计算结果吗?

预设:通过前面的操作和交流,学生应该能领悟到分子不能被除数整除该选择哪种图示,并能说清:把平均分成3份,每份就是的,即。

1.分数除以整数,如果分子能被除数整除,那么计算方法是分子除以除数的商作为分子,分母不变;如果分子不能被除数整除,那么转化为求这个数的几分之一来计算。

2.把一个数平均分成几份,就是求这个数的几分之一是多少,也就是都可以转化成乘法来计算,相比这种方法适用的范围更广。

教师:同学们说得很好!看来分数除法可以转化为以前我们学过的分数乘法来计算。

设计意图通过交流,诱导学生经历由特殊到一般的探索过程,从中悟出分数除以整数的算理:把一个数平均分成几份,就是求这个数的几分之一是多少。初步体会新旧知识之间、方法之间的转化与统一,比较自然地渗透转化的思想。

(四)应用规律,尝试练习

教师:请你独立思考并完成教材第30页“做一做”。

设计意图对关键步骤进行针对性训练,使学生进一步理解分数除以整数的实际意义,即:把一个数平均分成几份,就是求这个数的几分之一。进一步体会把分数除法转化为乘法具有普适性。

(五)巩固练习,熟练算法

1.教师:请你完成教材第34页练习七第

1、2题。

先尝试独立填空,然后组织交流,让学生明白分数除法和分数乘法的互逆关系。

2.教师:请你完成教材第34页练习七第4题。

左边的三个算式的分子都是3的倍数,所以可以用分子除以3,也可以转化为乘法;右边一组的分子都不是3的倍数,只能用一般算法。通过进一步的比较和练习,体会算法的灵活性和一般方法的普适性。

3.教师:下面让我们一起来解决一个实际问题,请你完成教材第34页练习七第3题。

引导学生可以画图来验证自己的计算结果,也可转化为小数来验证自己的计算结果,培养学生的反思意识。

(六)全课总结,交流收获

教师:今天我们共同学习了什么知识?你有什么收获?

分数除以分数教学设计一等奖【第四篇】

小学数学《分数除以分数》

教学

设计 由本站会员“65a465654”投稿精心推荐,网友希望对你的学习工作能带来参考借鉴作用。

作为一名教师,时常需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。一份好的教学设计是什么样子的呢?以下是网友为大家分享的“分数除以分数教学设计一等奖【汇集5篇】”,仅供参考,欢迎大家阅读。

教学内容:

苏教版义务教育教科书《数学》六年级上册第46页例4、练一练,第48页练习七第9~14题。

教学目标:使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的试题。

使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

教学重点:

教学准备:

多媒体课件。

教学过程:

一、复习引新

1、口算。

23÷2 14÷4 512÷10 310÷6

二、教学例41、出示例4,学生读题,列式。

提问:这是已知什么,要求什么?用什么方法计算?

追问:为什么用除法计算?怎样列式?

(1)请大家画图探索一下这个算式得多少?

各自在书上的长方形里分一分,画一画。

(2)指名到黑板上画一画,使大家清楚地看出是3瓶。

(3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?

请大家计算一下它的积,看得数与我们画图的.结果是不是一样?(一样)

得数相同,你能猜想到什么?

3、练习,验证猜想

完成练一练

第1

题:先再长方形中涂色表示,看看里有几个,有几个,再计算。

你发现了什么?

4、概括方法

根据学生的讨论,板书:

三、

练习

1、做“练一练”第1题。

各自练习,并指名板演,练习后评议交流。

2、完成练习七第10题。

3、讨论练习七第11题。

引导:你能不计算,运用已经发现的规律直接填空吗?

4、讨论练习七第12题:

指出:交换被除数和除数,所得的商与原来的商互为倒数。

四、作业:

练习七第9、13、14题。

小学数学《分数除以分数》教学设计如果还不能满足你的要求,请在本站搜索更多其他小学数学《分数除以分数》教学设计范文。

分数除以分数教学设计

分数除以整数教学设计

数学分数教学设计

一个数除以分数教学设计

-->

分数除以分数教学设计一等奖【第五篇】

:课本第25-26的内容和练习七的第1-6题。

1、理解分数除法的意义,推导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

:使学生理解分数除法的意义与整数除法的意义是相同的。

:使学生学会分数除以整数的计算法则,并能应用法则正确计算。

1、根据25×4=100写出两个除法算式。

2、整数除法的意义是什么?

3、把12平均分成3份,求每份是多少?

4、求12的3分之1是多少?

1、教学分数除法的意义。

(1)出示月饼图并提问:每人吃半块月饼,4个人一共吃几块?请你列式计算。(学生回答,教师板书)

(2)2块月饼,平均分给4人,每人分得几块?(引导学生看图,列式计算,教师板书。)

(这个算式与第1个算式比,已知积和其中一个因数,求另一个因数。)

(3)两块月饼,分给每人半块,可以分给几人?(引导学生看图,列式计算,教师板书。)

第3个算式与第1个算式比,已知什么数,求什么数?

(4)第(2)(3)两个算式有什么共同的特点?

2、练习:完成课本第25页做一做的题目。

学生填完后说一说是怎样想的及每个算式所表示的意义,引导学生理解:已知一个数的几分之几是多少求这个数用除法计算。

(1)出示例题,学生审题,教师画出线段图,引导学生明确题意,列出算式:6/7除以2(说出6/7的含义及算式含义)

(2)每段到底长多少米呢?同学们能否以小组形式自己试着算一算,算时请你认真观察线段图,并把你的想法记录下来。

(3)学生分小组汇报学习成员。(学生回答,教师板书两种不同的思路)

(4)学生对以上思路进行质疑:

1、教科书第26页的“做一做”的题目。

3、练习七的第5题,学生独立列式计算。

第1、3、4、6题。

""

""

-->

相关推荐

热门文档

48 647360