实用解方程的教学设计及反思 方程教学设计(10篇)
解方程的教学设计及反思【第一篇】
教学目标:。
1、知识目标:在理解化学方程式意义的基础上,使学生掌握有关反应物、生成物质量的计算。
2、能力目标:掌握解题方法和解题格式,培养学生解题能力。
思想教育:
从定量的角度理解化学反应,了解根据化学方程式的计算在工、农业生产和科学实验中的意义,学会科学地利用资源。
教学重点:
由一种反应物(或生成物)的质量求生成物(或反应物)的质量。
情况分析:
通过前一节的学习,学生对化学方程式有了一定的了解。理解化学方程式的意义是根据化学方程式计算的关键,教师应紧紧结合化学方程式意义,引导学生对如何根据化学方程式进行计算这一问题进行探究。通过分析题意,理清解题思路,教给学生解题方法,培养学生分析解决计算问题的能力;通过解题训练,培养学生正确、简明地表达能力。
教学方法:
1、探究法:通过对问题的合理设计,使学生在教师的引导下逐步探究关于化学方程式计算的解题思路和解题格式。
2、边讲边练法:通过边讲边练,及时反馈信息,达到师生互动,争取在课堂40分钟解决本节课大部分问题。
教学辅助设备:小黑板、学生课堂练习资料。
教学过程:
教师活动。
学生活动。
教学意图。
提问引入:
前面我们学习了化学方程式,化学方程式表示的意义是什么?试从定性和定量两个方面来说明。
请书写出氢气还原氧化铜的化学方程式,计算出反应物和生成物各物质之间的质量比,并指明该化学方程式所表示的意义。
过渡:根据化学方程式所表示的量的意义,我们可以在已知化学方程式中某物质的质量的情况下,计算别的物质的质量。这就是我们今天要探究的问题。
提出问题:同学们,我们现在用学过的知识试着去。
解决下面的问题。
例题1:用足量的氢气还原氧化铜制取铜,如果得到128kg的铜,至少需要多少氧化铜?(同时需要多少克氢气?)。
让学生自己试着去解决该问题,教师作适当引导。并请一位学生上台演算。
引导提问:
你们是以什么样的思路去解决这个问题的呢?
让学生分组讨论一会儿,然后让学生对解题思路进行总结。
总结:
解题思路:
2、找出已知量、未知量(设为x),并根据化学方程式计算出已知量、未知量的质量比。分两行写在对应的化学式下面。
3、列出比例式,求解x。
巩固练习:
现在我们就用刚才总结的`解题思路再来解决一个问题,并请同学们按照你们认为正确的解题格式将解题过程书写出来。
例题2:13g锌和足量的稀硫酸反应可制得多少克氢气?
让学生分组讨论,然后总结出解题格式,并请学生回答。
解题格式:
1、设未知量为x。
3、找已知量、未知量,并计算其质量比。
4、列比例式,求解未知量。
5、简明地答。
点拨:对解题格式中的相关事项作进一步强调。
现在我们就用刚学过的解题思路和解题格式知识,完成下列两个练习题。
巩固练习:
1、电解水可得多少克氢气?
2、在空气中燃烧多少克木炭可得22g二氧化碳?
让两位学生到台上演算。
引导:指导学生做课堂练习,随时纠正学生在练习中出现的问题,对于学习稍差的学生要进行个别的帮助。
解题辨析:
下题的两种计算的结果都是错误的,请指出其中错误,并进行正确的计算。
内容:略。
(如果时间不够,则将该部分内容移到下节课进行。)。
通过前面的学习,对根据化学方程式进行计算中应注意的事项,请同学们总结一下。
对学生的小结,教师作适当引导和补充。
小结:
本节课的主要内容可以用下面几句韵语加以记忆。
化学方程要配平,需将纯量代方程;关系式对关系量,计算单位不能忘;关系量间成比例,解设比答需完整。
课外练习:
教材习题。
根据提出的问题进行思考,产生求知欲。
学生书写化学方程式,并请一位学生上台书写,另请一位学生回答意义。
学生对以小黑板出示的例题略作观察,稍加思考。
可让一个学生上台来演算。
让学生思考、讨论一、两分钟,请一、两位学生回答。
学生仔细体会解题的思路过程。
学生进行练习,请一位学生上台演算,并写出解题过程。
学生在解题过程中注意使用正确的解题格式。
学生分析总结出解题格式,一、两位学生代表作答。
对照教师给出的解题格式,学生仔细体会,并和解题思路作比较。
依照例题,严格按计算格式完成课堂练习。
强化训练,巩固知识,提高技能。
学生积极思考,并指出其中错误。
学生总结解题注意事项,请一、两位学生作答。
理解记忆。
独立完成课外练习。
问题导思,激发学生学习兴趣。
让学生回忆化学方程式的意义,加深对化学方程式意义的理解。因为理解化学方程式的意义对本节课有根本性的重要意义。
以具体的问题引导学生进入学习新知识情景。
结合具体的实例教会学生分析题意,学会如何解计算题。
充分发挥学生的主体作用,让学生在探究问题中体会到成功的乐趣。
重点引导学生从思维的特点出发,养成正确地审题、解题习惯,找准解题的突破口。
加深巩固,进一步强化用正确的思路去分析、解答计算题。
培养学生严格认真的科学态度和书写完整、规范的良好学习习惯。
掌握解题格式和解题方法,培养学生分析问题和解决问题的能力。
通过练习加深巩固知识,强化计算技能。通过练习发现问题,及时纠正。
辨析解题正误,发现典型错误,避免学生犯类似错误。
让学生自主学习,培养学生分析问题解决问题能力;教师只作恰当及时点拨。
在轻松、愉快中学会知识,会学知识。
加深、巩固知识,反馈信息。
课后反思:
解方程的教学设计及反思【第二篇】
(1)使学生理解方程概念,感受方程思想。
(2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
一、创设情景,抽象数学模式。
1、出示实物天平。
(实物天平比较小,用屏幕上的天平来模拟实验。)。
(说明两边的重量可能有三种不同的关系。)。
用式子描述重量之间的相等关系。
3、一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?
用式子表示两队比分的关系。
用式子来表示比分的三种关系。
4、创设四个情景。
(1)每个情景中数量之间有什么关系?
(2)你能用关系式清晰地来描述吗?
二、引导分类,概括方程概念。
刚才我们对情景的描述得到了很多式子。
2801001204x25+x=7022y+720=1050。
1、学生尝试第一次分类。
可能有几种不同的分法。
(1)看是否是等式。
(2)看是否含有未知数。
……。
2、学生尝试第二次分类。
得到四组不同的式子。
3、描述每一组的特征。
4、引导概括方程概念。
含有未知数的等式叫方程。
三、抓等量关系,体会方程本质。
1、演示动态平衡。有等量关系,能用方程表示。
2、出示情景(没有等量关系,不能用方程表示。)。
出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)。
3、通过今天这节课,你学到了什么呢?
四、联系实际,应用与拓展。
1、周老师从无锡到徐州来上课。
(1)线段图。
(2)我乘火车从无锡站开出,每小时行x千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。
(3)到了徐州站,我买了3枝圆珠笔,每枝x元,付出20元,找回2元。
2、情景图。
本届奥运会上,中国台北队获得了x枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。”
3、开放题。
小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多?(用方程表示)。
在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。
整体的把握:
数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:
形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。
发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。
直观具体层面——举出正例或反例。
直觉层面——一种数学的意识、一种方程的感觉。
这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)。
目标的把握:
经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。
渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。
过程的把握:
统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。
本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。
经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。
解方程的教学设计及反思【第三篇】
教学理念:让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。
教学目标:
1、借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。
2、会用方程表示数量关系。
3、培养学生观察、描述、分类、抽象、概括、应用等能力。
4、感受方程与现实生活的密切联系,体验数学活动的探索性。
重点:理解方程是含有未知数的等式;
课前谈话:渗透平衡和等量(谈体验)。
教学过程:
一、激情导入:
出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。
二、探究新知:
1.对不同的式子进行分类(不要有任何要求)。
让学生先独立思考,然后小组合作交流自己的想法。
2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。
让小组的代表说说自己组是怎样分类的?为什么这样分类?
3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)。
4.小组探究“什么是方程?”(先观察式子,独立思考,后小组交流)。
5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。
6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。
7.生举例。
8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。
9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?
10、判断两句话:所有的方程都是等式,所有的等式都是方程。
11、画图表示方程与等式之间的关系。
三.应用练习。
1.判断下列式子是不是方程。
2.看图列方程。
3.根据题意列方程。
四.拓展延伸。
1、谈谈自己在知识和情感上的收获。
2、送给同学们一个方程:天才+x=成功。
解方程的教学设计及反思【第四篇】
方程的意义(人教版义务教育课程标准实验教材五年级上册第四单元第二小节解简易方程的第一课时)
新课标要求数学课程的培养目标要面向全体学生,适应学生个性发展的需要,使得人人都获得良好的数学教育,不同的人在数学上得到不同的发展。让学生获得数学活动经验,培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果。学会用图形思考、想象问题,能从“数”与“形”两个角度认识数学。
本节课我根据盲生因视觉障碍,对事物缺少整体感知,不能准确地理解抽象的数学观念这一特点,我充分利用直观创设情境,恰当地构造数学问题,将抽象的数学关系具体化,调动学生的直观思维;让学生经历观察、感知、思考、猜想、验证、分类比较、归纳概括的过程。通过数形结合的方法实现抽象与具体之间的转变。
方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,从未知数只是结果到未知数参加运算,是学生学习数学方法的一次提升;也是学生又一次接触初步代数思想,是思维的一次飞跃。代数思维是数学学习的"核心思想",本课教学内容是学生从算术思维到代数思维的过渡。
1.根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。
2.使学生在观察、感知、思考、猜想、验证、分类比较、归纳概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成方程模型的思想,掌握研究问题的方法。
3.分类分层教学,在学生学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。
结合具体情境理解方程的意义,用方程表示简单的等量关系。
从算术思维到代数思维的过渡。
玩具天平塑料香蕉小袋子多媒体课件、盲文及低视力卡片
1.认识天平
同学们认识天平吗?知道天平是干什么用的吗?(称质量、比较物体的质量)那天平是根据什么来称量或者比较物体的质量?(平衡)让学生用玩具天平来感知一下平衡(低视生看,老师协助全盲生用手慢慢向上托,直到手掌触到物体)
低视力生看大屏幕,根据自己看到的画面,帮助全盲生把实物挂起来(天平左面有60克和40克的香蕉,右面有100克的香蕉)
天平此时的状态怎么样哪?(低视力生观察,全盲生感知。)天平平衡说明什么?(左右两边质量相等)
能用数学式子表示出来吗?
预设:40+60=100 60+40=100(板书)。
像这样含有等号的式子我们叫它等式。
3、让学生再说几个等式。
1.理解不相等
如果把左边40克的香蕉拿下去了,天平会怎样?(预设:左边轻,右边重。)
此时天平的状态又怎样哪?(不平衡。)低视生观察,全盲生感知。
让学生用一个数学式子表示。(预设:60<100,10060 。
刚才相等的式子叫等式,这样不相等的呢?(预设:不等式,或不知道。)
2、让学生再说几个不等式。
1、猜想:如果把一个袋子放到天平的左边,天平会怎么样?可能会出现哪些情况?
2、交流。(预设:左边重,右边轻;右边重,左边轻;一样重。)
3、验证:低视力生协助全盲生操作验证(教师协助)
1、谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了(把玩具天平收起来)
还有天平吗?(预设:没有。)
你心中的天平还有没有?(有)
2、出示课件:
3、低视力生看大屏幕,并叙述图意。
5、让学生用数学式子表示出来。(预设:5x=800)并让学生说一说5x表示的意思。(预设:5x是5个苹果的质量)
6、说一说:5个苹果的质量为什么用5x来表示?(预设:因为一个苹果的质量不知道,可以用x表示,5个苹果的质量就用5x来表示。)
7、评价:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。
1、一小组为单位,让学生拿出自己的卡片,给刚才的式子分类。并思考分类标准。
2、学生交流(预设:
1、按是否是等式来分。
2、是否含有字母来分。
3、还有学生把60+x=100,5x=800单分一类)
3、教师揭示:象60+x=100,5x=800就是方程
4、让学生根据这两个式子的特点说一说什么叫方程?
5、教师点题:含有未知数的等式叫做方程
1、让学生试着说一说方程与等式的关系。
2、学生交流
3、教师引导:如果方程是一个大圆,方程应该是什么?(预设:一个小圆,在大圆中)
刚才我们认识了方程,你能判断什么是方程吗?
1.应用概念,判断方程
判断下面的式子是否是方程。(提问c类学生)
x+5 15+5=20 2x +310 36-x=9×3 2.应用概念,解决问题。
(1)课件出示:(提问b类学生)
(5)课件出示:(提问a、b类学生)
教法同上
(6)课件出示:(提问a类学生)
(7)先让低视生说说这幅图的意思?
(9)评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。
总结提升这节课你学到了什么?
(结合学生的回答,小结)
(2)根据今天学习的知识,编一个关于方程的数学故事
教学内容:苏教版四年级(第八册)教学目标: (1)使学生理解方程概念,感受方程思想。 (2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
解方程的教学设计及反思【第五篇】
(1)明确直线方程一般式的形式特征;
(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;
(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法:学会用分类讨论的思想方法解决问题。
3、情态与价值观
(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
问题
设计意图
师生活动
1、(1)平面直角坐标系中的每一条直线都可以用一个关于的二元一次方程表示吗?
(2)每一个关于的二元一次方程(a,b不同时为0)都表示一条直线吗?
使学生理解直线和二元一次方程的关系。
教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。为此要对b分类讨论,即当时和当b=0时两种情形进行变形。然后由学生去变形判断,得出结论:
关于的二元一次方程,它都表示一条直线。
教师概括指出:由于任何一条直线都可以用一个关于的二元一次方程表示;同时,任何一个关于的二元一次方程都表示一条直线。
我们把关于关于的二元一次方程(a,b不同时为0)叫做直线的一般式方程,简称一般式(generalform).
2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?
使学生理解直线方程的一般式的与其他形
学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:
问题
设计意图
师生活动
式的不同点。
直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与轴垂直的直线。
3、在方程中,a,b,c为何值时,方程表示的直线
(1)平行于轴;(2)平行于轴;(3)与轴重合;(4)与重合。
使学生理解二元一次方程的系数和常数项对直线的位置的影响。
教师引导学生回顾前面所学过的与轴平行和重合、与轴平行和重合的直线方程的形式。然后由学生自主探索得到问题的答案。
4、例5的教学
已知直线经过点a(6,-4),斜率为,求直线的点斜式和一般式方程。
使学生体会把直线方程的点斜式转化为一般式,把握直线方程一般式的特点。
学生独立完成。然后教师检查、评价、反馈。指出:对于直线方程的一般式,一般作如下约定:一般按含项、含项、常数项顺序排列;项的系数为正;,的系数和常数项一般不出现分数;无特加要时,求直线方程的结果写成一般式。
5、例6的教学
把直线的一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上的截距,并画出图形。
使学生体会直线方程的一般式化为斜截式,和已知直线方程的一般式求直线的斜率和截距的方法。
先由学生思考解答,并让一个学生上黑板板书。然后教师引导学生归纳出由直线方程的一般式,求直线的斜率和截距的方法:把一般式转化为斜截式可求出直线的斜率的和直线在轴上的截距。求直线与轴的截距,即求直线与轴交点的横坐标,为此可在方程中令=0,解出值,即为与直线与轴的截距。
在直角坐标系中画直线时,通常找出直线下两个坐标轴的交点。
使学生进一步理解二元一次方程与直线的关系,体会直解坐标系把直线与方程联系起来。
学生阅读教材第105页,从中获得对问题的理解。
7、课堂练习
巩固所学知识和方法。
学生独立完成,教师检查、评价。
问题
设计意图
师生活动
8、小结
使学生对直线方程的理解有一个整体的认识。
(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。
(2)比较各种直线方程的形式特点和适用范围。
(3)求直线方程应具有多少个条件?
(4)学习本节用到了哪些数学思想方法?
巩固课堂上所学的知识和方法。
学生课后独立思考完成。
归纳小结:
(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。
(2)比较各种直线方程的形式特点和适用范围。
(3)求直线方程应具有多少个条件?
(4)学习本节用到了哪些数学思想方法?
作业布置:第101页习题第10,11题
课后记:
解方程的教学设计及反思【第六篇】
前段时间听了张老师的《圆的标准方程》,我觉得张老师教学方法把握得当,对新课程理念的领会深刻,为学生营造了一个宽松、和谐的学习氛围,体现了“以学生为主体”的教学思想。她的教学构思,教学方法使课堂教学别开生面,使我们听课者真正感受到数学教学艺术的魅力。主要体现在以下几点:
从张老师设计的三维目标来看,目标广度和深度的设计都符合数学课程标准和教材的要求,也符合学生实际,以下分点来谈:
(3)情感、态度与价值观这个目标体现了对学生学习兴趣和良好的学习品质的培养,如勤于思考、勤于动手。
张老师这节课的主要内容为:圆的标准方程、点与圆的位置关系以及圆的标准方程的应用,教学内容紧扣目标、反映目标。
圆的标准方程中的设计包含了正反两方面:一是圆上任一点都满足,二是满足的点都在圆上,这样的设计可以提醒学生圆的标准方程的定义里包含了两方面的内容。对于点与圆的位置关系的探究,非常自然,让人有一种水到渠成的感觉,学生探究起来也非常轻松。圆的标准方程的应用旨在用待定系数法求圆的标准方程,可以看出每道题都是教师精挑细选的,并且题目的安排由易到难,符合学生的思维特点。
所以,这堂课的教学内容具有科学性、思想性,也无知识性和原则性错误;对重、难点的处理很到位,通过探究活动突破了难点,体现了重点,比如说对于圆的标准方程的应用这个难点来说,她通过让学生观察圆的标准方程,然后让学生合作交流要求什么即是确定什么,这样的做法让学生在以后的应用中很有方向性;对学生的易错点,也做了着重强调,如圆半径为,而不是。这些对于教材处理的过程,都体现出了教师对教材的深刻理解,也诠释了用教材去教而不是教教材这一教学理念。
本节课中教师从学生的实际出发,以学生的探、思、答、练为主线,教师的引、导、启、评为辅线,合理运用探究式学习方法,每一个知识点都由学生根据自己已有的知识去探究,这种方法不仅让学生的手、脑真正动起来了,还有利于教学目标的达成;而且充分发挥了学生的自主性、积极性和创新精神,让每位学生都能获得极大程度的发展。
我觉得张老师的教学基本功非常扎实,表现在:
四是现代化设备使用适时,如ppt和展台。
从课堂氛围来看,师生互动密切,教师为学生营造了一个轻松、平等的环境,而学生能够大胆地探究、合作以及交流。毋庸置疑,最终的效果就是教学效率高:学生轻松地开拓了思维,获得了新的认识和情感体验,教师也轻松愉快地上完了一节课。
总之,我觉得张老师这堂课上得很成功,听了张老师的课后,我也做了如下的反思:
第一,课堂的引入必须要提起学生的兴趣;
第二,在做教学设计时更多地考虑学生的主动性;
第四,要注意多去关注学生,包括学生的疑问、见解以及及时地给予鼓励。
谢谢大家!
解方程的教学设计及反思【第七篇】
本课是针对人民教育出版社出版的《七年级数学上册》第三章一元一次方程中3。4实际问题与一元一次方程(行程问题应用题归类解析——追及问题)设计的内容。
(一)知识与技能:
1、使学生进一步掌握列一元一次方程解应用题的方法和步骤;
2、熟练掌握追及问题中的等量关系。
(二)过程与方法。
培养学生观察能力,提高他们分析问题和解决实际问题的能力。
(三)情感态度价值观:
培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。
2、难点:将实际问题转化为数学模型,并找出等量关系。
探究式。
一、创设问题情景,引入新课:
1、行程问题中有哪些基本量?它们间有什么关系?
2、行程问题有哪些基本类型?
二、知识应用,拓展创新:
行程问题应用题是中小学数学应用题中很重要的一类,学生难以理解,不容易掌握。行程问题的题型千变万化,导致许多学生感到束手无策,难以适从。其实认真分析,就会发现行程问题应用题主要有三种基本类型:追及问题、相遇问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”保持不变。
三、例题讲解。
解:设x秒后乙能追上甲。
根据题意得5x—3x=100。
解得x=50。
答:50秒后乙能追上甲。
小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)。
中的同时不同地问题,以后遇到此类题,该如何解决。
分析:这个问题中,由于黄色马先跑1s(此时棕色马未出发),经过1s后棕色马再开始出发和黄色马同向而行,后来棕色马追上黄色马了。因此两马所跑路程是相同的,但由于黄色马先跑了1秒,所以就产生了路程差,那么这个问题就和前面例1一样了。也可以这样想:棕色马的路程=黄色马的路程+相隔距离。
解:设x秒后,棕色马追上黄色马,根据题意,得6x=5x+5解得x=5答:5秒后,棕色马可以追上黄色马。
小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)。
中的同地不同时问题。
归纳小结:列方程解应用题的一般步骤:
审—通过审题明确已知量、未知量,找出等量关系;
设—设出合理的未知数(直接或间接);
列—依据找到的等量关系,列出方程;
解—求出方程的解;
验—检验求出的值是否为方程的解,并检验是否符合实际问题;
答—注意单位名称。
解答由学生完成。
本节知识归纳:
1、追及问题的特点是同向而行,在直线运动中两者路程之差等于两者间的距离;
2、而在圆周运动中,若同时同地同向出发,则二者路程之差等于跑道的周长。
3、用示意图辅助分析数量间的关系便于我们列方程。
四、作业布置:(见补充题)。
通过本节课的学习,使学生进一步掌握列一元一次方程解应用题的方法和步骤,并能熟练寻找追及问题中的等量关系,列出方程,解决追及问题。
解方程的教学设计及反思【第八篇】
一、感受天平的平衡现象,悟出等式的性质变化。
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
二、等式性质解方程——初步感悟它的妙用。
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
1、从教材的编排上,整体难度下降,有意避开了,形如:45—x=2324÷x=6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现x前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出x在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答x在后面这类方程的解答方法,就是等号二边同时加上x,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充x前面是除号或减号的方程的解法。要教他们列方程时怎么避免x前面是除号或减号的方程的出现等等。
解方程的教学设计及反思【第九篇】
教学内容。
方程的意义(人教版义务教育课程标准实验教材五年级上册第四单元第二小节解简易方程的第一课时)。
教学理念。
新课标要求数学课程的培养目标要面向全体学生,适应学生个性发展的需要,使得人人都获得良好的数学教育,不同的人在数学上得到不同的发展。让学生获得数学活动经验,培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果。学会用图形思考、想象问题,能从“数”与“形”两个角度认识数学。
教学策略。
本节课我根据盲生因视觉障碍,对事物缺少整体感知,不能准确地理解抽象的数学观念这一特点,我充分利用直观创设情境,恰当地构造数学问题,将抽象的数学关系具体化,调动学生的直观思维;让学生经历观察、感知、思考、猜想、验证、分类比较、归纳概括的过程。通过数形结合的方法实现抽象与具体之间的转变。
内容分析。
方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,从未知数只是结果到未知数参加运算,是学生学习数学方法的一次提升;也是学生又一次接触初步代数思想,是思维的一次飞跃。代数思维是数学学习的"核心思想",本课教学内容是学生从算术思维到代数思维的过渡。
教学目标。
1.根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。
2.使学生在观察、感知、思考、猜想、验证、分类比较、归纳概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成方程模型的思想,掌握研究问题的方法。
3.分类分层教学,在学生学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。
教学重点。
结合具体情境理解方程的意义,用方程表示简单的等量关系。
教学难点。
从算术思维到代数思维的过渡。
教学准备。
玩具天平塑料香蕉小袋子多媒体课件、盲文及低视力卡片。
教学过程。
一、创设情境,抽象出等量关系。
(一)依据天平,理解相等,1.认识天平。
同学们认识天平吗?知道天平是干什么用的吗?(称质量、比较物体的质量)那天平是根据什么来称量或者比较物体的质量?(平衡)让学生用玩具天平来感知一下平衡(低视生看,老师协助全盲生用手慢慢向上托,直到手掌触到物体)。
低视力生看大屏幕,根据自己看到的画面,帮助全盲生把实物挂起来(天平左面有60克和40克的香蕉,右面有100克的香蕉)。
天平此时的状态怎么样哪?(低视力生观察,全盲生感知。)天平平衡说明什么?(左右两边质量相等)。
能用数学式子表示出来吗?
预设:40+60=10060+40=100(板书)。
像这样含有等号的式子我们叫它等式。
3、让学生再说几个等式。
(二)依据天平,理解不相等1.理解不相等。
如果把左边40克的香蕉拿下去了,天平会怎样?(预设:左边轻,右边重。)。
此时天平的状态又怎样哪?(不平衡。)低视生观察,全盲生感知。
让学生用一个数学式子表示。(预设:60<100,10060。
刚才相等的式子叫等式,这样不相等的呢?(预设:不等式,或不知道。)。
2、让学生再说几个不等式。
(三)依据天平,理解含有字母的等式与不等式。
1、猜想:如果把一个袋子放到天平的左边,天平会怎么样?可能会出现哪些情况?
2、交流。(预设:左边重,右边轻;右边重,左边轻;一样重。)。
3、验证:低视力生协助全盲生操作验证(教师协助)。
1、谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了(把玩具天平收起来)。
还有天平吗?(预设:没有。)。
你心中的天平还有没有?(有)。
2、出示课件:
3、低视力生看大屏幕,并叙述图意。
5、让学生用数学式子表示出来。(预设:5x=800)并让学生说一说5x表示的意思。(预设:5x是5个苹果的质量)。
6、说一说:5个苹果的质量为什么用5x来表示?(预设:因为一个苹果的质量不知道,可以用x表示,5个苹果的质量就用5x来表示。)。
7、评价:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。
二、引导学生给式子分类,抽象概括出方程的意义。
(一)式子分类,揭示方程的意义。
1、一小组为单位,让学生拿出自己的卡片,给刚才的式子分类。并思考分类标准。
2、学生交流(预设:
1、按是否是等式来分。
2、是否含有字母来分。
3、还有学生把60+x=100,5x=800单分一类)。
3、教师揭示:象60+x=100,5x=800就是方程。
4、让学生根据这两个式子的特点说一说什么叫方程?
5、教师点题:含有未知数的等式叫做方程。
(二).探讨并揭示等式与方程的关系。
1、让学生试着说一说方程与等式的关系。
2、学生交流。
3、教师引导:如果方程是一个大圆,方程应该是什么?(预设:一个小圆,在大圆中)。
三、巩固拓展、应用概念。
刚才我们认识了方程,你能判断什么是方程吗?
1.应用概念,判断方程。
判断下面的式子是否是方程。(提问c类学生)。
x+515+5=202x+31036-x=9×32.应用概念,解决问题。
(1)课件出示:(提问b类学生)。
(5)课件出示:(提问a、b类学生)。
教法同上。
(6)课件出示:(提问a类学生)。
(7)先让低视生说说这幅图的意思?
(9)评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。
四、回顾反思总结提升这节课你学到了什么?
(结合学生的回答,小结)。
五、作业:(1)练习十一第一题。
(2)根据今天学习的知识,编一个关于方程的数学故事。
解方程的教学设计及反思【第十篇】
人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。
准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
理解方程的意义,即方程两边代数式所表达的两件事情是等价的。
1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?
提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)
2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。
3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)
(对不是方程的式子,一定要学生从本质上解释为什么不是方程)
课件出示(配以录音):早在三千六百多年前,埃及人就会用方程解决数学问题了,在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料,一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
很多以前用算术方法解起来很难的问题,用方程能轻而易举地解出来。
动态平衡是为了加深对方程本质的理解判断题中对不是方程的式子的合理解释,进一步明晰了方程的表现形式有别于其他等式、不等式或代数式,为了让学生感知方程的多样性,防止学生把未知数狭隘地理解为一个或者狭隘地理解为z,在这一题里设计了有两个未知数的,也设计了含有未知数a、y的。