数据分析师年终工作总结范文报告实用(5篇)
【请您参阅】下面供您参考的“数据分析师年终工作总结范文报告实用(5篇)”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
数据分析师年终工作总结报告【第一篇】
而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。
我们举两个通过数据分析获得成功的例子:
(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。
然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。
为此,我对自己的规划如下:
第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。
第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。
第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。
数据分析师年终工作总结报告【第二篇】
虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。
2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力。
这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。
数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一步的改进,找到机会点的人。往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。
4、数据应用师:将数据还原到产品中,为产品所用。
5、数据规划师:走在产品前面,让数据有新的价值方向。
1.标准报表。
回答:发生了什么?什么时候发生的?
示例:月度或季度财务报表。
我们都见过报表,它们一般是定期生成,用来回答在某个特定的领域发生了什么。从某种程度上来说它们是有用的,但无法用于制定长期决策。
2.即席查询。
回答:有多少数量?发生了多少次?在哪里?
示例:一周内各天各种门诊的病人数量报告。
即席查询的最大好处是,让你不断提出问题并寻找答案。
3.多维分析。
回答:问题到底出在哪里?我该如何寻找答案?
示例:对各种手机类型的用户进行排序,探查他们的呼叫行为。
通过多维分析(olap)的钻取功能,可以让您有初步的发现。钻取功能如同层层剥笋,发现问题所在。
4.警报。
回答:我什么时候该有所反应?现在该做什么?
示例:当销售额落后于目标时,销售总监将收到警报。
5.统计分析。
回答:为什么会出现这种情况?我错失了什么机会?
示例:银行可以弄清楚为什么重新申请房贷的客户在增多。
这时您已经可以进行一些复杂的分析,比如频次分析模型或回归分析等等。统计分析是在历史数据中进行统计并总结规律。
6.预报。
回答:如果持续这种发展趋势,未来会怎么样?还需要多少?什么时候需要?
示例:零售商可以预计特定商品未来一段时间在各个门店的需求量。
预报可以说是最热门的分析应用之一,各行各业都用得到。特别对于供应商来说,能够准确预报需求,就可以让他们合理安排库存,既不会缺货,也不会积压。
7.预测型建模。
回答:接下来会发生什么?它对业务的影响程度如何?
示例:酒店和娱乐行业可以预测哪些vip客户会对特定度假产品有兴趣。
如果您拥有上千万的客户,并希望展开一次市场营销活动,那么哪些人会是最可能响应的客户呢?如何划分出这些客户?哪些客户会流失?预测型建模能够给出解答。
8.优化。
回答:如何把事情做得更好?对于一个复杂问题来说,那种决策是最优的?
示例:在给定了业务上的优先级、资源调配的约束条件以及可用技术的情况下,请您来给出it平台优化的最佳方案,以满足每个用户的需求。
优化带来创新,它同时考虑到资源与需求,帮助您找到实现目标的最佳方式。
数据分析师年终工作总结报告【第三篇】
1、努力学习,全面学习新知识检验工作是一个特殊的岗位,它要求永无止境的学习新的知识和提高技能,为达到这一要求,所以我们必须要注重学习(学习新知识,学习新的工艺,学习新的图纸等)。
3、日常生活,工作态度积极端正一年以来,我能自觉遵守公司的各项规章制度,在工作中,不迟到、不早退、有事主动请假,尊重领导、团结同事,待人真诚,任劳任怨。努力做到了:
一是按规章自律。领导规定不准做的我绝对不做,领导要求达到的我争取达到,不违章、违纪,不犯规、犯法,做个称职的质检员。二是用制度自律。我严格按公司制定的各项制度办事。在质量方面,坚决做不该用的坚决不用,不搞人情主义。对自己分内的工作也能积极对待,努力完成,做到既不越位,又要到位。在同部门其他同事的工作协调上,做到互相理解、互帮互学、真诚相待,建立了友谊,也获得了许多有益的启示。我深知成绩的背后有我们质量部门全体人员的共同努力和辛勤的汗水。今后,我仍然会以平常之心对待不平常的事,勇于进取,一如既往地做好每一件事情。
4、存在的主要问题回顾检查自身存在的问题,虽能敬业爱岗、积极主动开展工作,取得了一些成绩,但仍然有许多需要不断的改进和完善的地方,我一直在努力,并且力求做好。在工作中由于专业知识较少,经验不足,对待一些问题的解决方法过于单纯,工作方法过于简单;看待问题有时比较片面,以点盖面,在一些问题的处理上显得还不够冷静,在完成领导交办的任务的基础上,发挥自身优势,继续加强专业知识的学习,进一步提高各项检验技能。
5、20xx年的工作规划在新的一年里,我决心认真提高业务、工作水平,贡献自己应该贡献的力量。在下一步的工作中,我要虚心向其他同行和同事学习工作经验,借鉴好的工作方法;同时在业余时间努力学习业务理论知识,扩大猎取知识的范围,不断提高自身的业务素质和水平,使自己的全面素质再有一个新的提高,以适应公司的发展和社会的需要。要进一步强化敬业精神,增强责任意识,提高完成工作的标准。我想我应努力做到:
第一,根据领导要求,加强学习,技术掌握成熟;
第四,对检验仪器要正确操作,做到及时用及时清理、及时登记,做好日常维护工作;第五,热爱本职工作,继续学习有关质量知识。总之,心态决定状态,状态决定成败!对公司要有责任心,对社会要有爱心,对工作要有恒心,对同事要有热心,对自己要有信心!做最好的自己!
数据分析师年终工作总结报告【第四篇】
那么怎样既有这些内容又能简洁表达呢?其实,雇主并不要求大学生实践活动的经验必须与应聘的职位对应,而是注重考察在这些实践活动中显示或者锻炼了应聘者的哪些能力,这些能力是不是职位所要求的或者有否发展潜力。因此,所谓的“简”是把那些与别人相同相似的.经历简化或者减掉,重点突出自己独特的东西,并一定使之与招聘岗位的需求对应起来。到这里大家可能又会说,我怎么知道那个招聘的岗位是什么需求?其实,大部分岗位的基本要求是有相同之处的,比如工作的主动性、时间管理、细节管理、沟通能力等。
个人信息。
三年以上工作经验|男|26岁。
居住地:xx。
电话:xxx。
e-mail:/jianli。
最近工作。
公司:xx金融证券有限公司。
行业:金融/投资/证券。
职位:证券分析师最高学历。
学历:本科。
专业:金融学。
学校:xx理工大学。
求职意向。
到岗时间:一周以内。
工作性质:全职。
希望行业:金融/投资/证券。
目标地点:西安。
期望月薪:面议/月。
目标职能:证券分析师。
工作经验。
20xx/x—至今:xx金融证券有限公司[x年x个月]。
所属行业:金融/投资/证券。
研发部证券分析师。
1、负责通过股市报告会、面谈等形式,营销理财服务;。
2、负责分析目标板块的上市公司的基本面,列出投资原因,并给出风险提示;。
3、负责宏观经济、政策走向分析及解读;。
4、负责协助基金经理,对持仓比重、结构、品种做出建议;。
5、负责协助其他分析师进行投资组合的配置。
20xx/x--20xx/x:xx金融证券有限公司[x年x个月]。
所属行业:金融/投资/证券。
市场部证券分析师。
1、负责为客户提供投资理财咨询;。
2、负责组建及管理投资顾问团队,维护投资渠道;。
3、负责维护客户关系,推广并销售公司的金融理财产品;。
4、负责通过数据、技术面的分析来进行股票买卖的实盘操作;。
5、负责定期召开投资报告会,培训客户经理的投资分析知识。
20xx/x--20xx/x:xx金融有限公司[xx个月]。
所属行业:金融/投资/证券。
投资部证券分析师。
2、负责跟踪****行业动态,并对行业内变化个股做出分析评价;。
3、负责维护客户,为客户提供咨询服务;。
4、负责***基金的交易,并指导交易员完成交易指令;。
5、负责培训下属员工以及分配部门任务。
教育经历。
20xx/x--20xx/xxx理工大学金融学本科。
语言能力。
英语(良好)听说(熟练),读写(良好)。
自我评价。
在证券公司任职***年,对于股票投资具有深入的研究,善于数据挖掘和财务分析,对于国家政策和经济形势发展具有敏锐的观察力。具有出色的逻辑思维能力和写作能力,曾在知名财经杂志发表文章数篇,得到读者的欢迎。能够承受巨大的工作强度,抗压能力强,工作责任心高,团队合作意识佳,希望在证券行业继续发展。
数据分析师年终工作总结报告【第五篇】
下面,我给你介绍一名合格的数据分析师需要具备的五大基本能力和素质。
1、态度严谨负责。
严谨负责是数据分析师的必备素质之一,只有本着严谨负责的态度,才能保证数据的客观、准确。在企业里,数据分析师可以说是企业的医生,他们通过对企业运营数据的分析,为企业寻找症结及问题。一名合格的数据分析师,应具有严谨、负责的态度,保持中立立场,客观评价企业发展过程中存在的问题,为决策层提供有效的参考依据;不应受其他因素影响而更改数据,隐瞒企业存在的问题,这样做对企业发展是非常不利的,甚至会造成严重的后果。而且,对数据分析师自身来说,也是前途尽毁,从此以后所做的数据分析结果都将受到质疑,因为你已经不再是可信赖的人,在同事、领导、客户面前已经失去了信任。所以,作为一名数据分析师就必须持有严谨负责的态度,这也是最基本的职业道德。
2、好奇心强烈。
好奇心人皆有之,但是作为数据分析师,这份好奇心就应该更强烈,要积极主动地发现和挖掘隐藏在数据内部的真相。在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果不是预期的那样等等。这一系列问题都要在进行数据分析时提出来,并且通过数据分析,给自己一个满意的答案。越是优秀的数据分析师,好奇心也越不容易满足,回答了一个问题,又会抛出一个新的问题,继续研究下去。只有拥有了这样一种刨根问底的精神,才会对数据和结论保持敏感,继而顺藤摸瓜,找出数据背后的真相。
3、逻辑思维清晰。
除了一颗探索真相的好奇心,数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。我记得有位大师说过:结构为王。何谓结构,结构就是我们常说的逻辑,不论说话还是写文章,都要有条理,有目的,不可眉毛胡子一把抓,不分主次。
通常从事数据分析时所面对的商业问题都是较为复杂的,我们要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方向。这就需要我们对事实有足够的了解,同时也需要我们能真正理清问题的整体以及局部的结构,在深度思考后,理清结构中相互的逻辑关系,只有这样才能真正客观地、科学地找到商业问题的答案。
4、擅长模仿。
在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速地成长,因此,模仿是快速提高学习成果的有效方法。这里说的模仿主要是参考他人优秀的分析思路和方法,而并不是说直接“照搬”。成功的模仿需要领会他人方法精髓,理解其分析原理,透过表面达到实质。万变不离其宗,要善于将这些精华转化为自己的知识,否则,只能是“一直在模仿,从未超越过”。
5、勇于创新。
通过模仿可以借鉴他人的成功经验,但模仿的时间不宜太长,并且建议每次模仿后都要进行总结,提出可以改进的地方,甚至要有所创新。创新是一个优秀数据分析师应具备的精神,只有不断的创新,才能提高自己的分析水平,使自己站在更高的角度来分析问题,为整个研究领域乃至社会带来更多的价值。现在的分析方法和研究课题千变万化,墨守成规是无法很好地解决所面临的新问题的。
听到这里,小白就掰着手指头算自己符合几条优秀数据分析师的素质和能力。
mr.林继续说道:这些素质能力不是说有就有的,需要慢慢培养形成,不能一蹴而就。