实用九年级数学教学反思案例【实用4篇】
【请您参阅】下面供您参考的“实用九年级数学教学反思案例【实用4篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
九年级【第一篇】
本节课成功之处有以下几点:
1、让学生的数学学习贴近生活。
数学来源于生活,并用于生活。初中数学,虽然知识越来越抽象,但是只要我们用心发现,还是可以找到现实生活中的素材。作为一名数学教师,要让学生体会他们学习的是有意义的数学,这些知识是与生活息息相关的,从而激起学生学习数学的兴趣。
在本节课的开头,利用多媒体课件展示生活中的圆形,学生在享受数学美的同时也深切地感受到生活离不开圆,体会到学习圆的重要性。虽然小学阶段学生已经对圆的有关知识有所了解,但只是一种感性认识,知道一个图形是圆,还没有抽象出“平面上到定点的距离等于定长的所有点组成的圆形叫做圆”的概念。本节课主要是让学生通过观察,把圆与车轮作类比,结合圆规画圆,得出圆的本质特点“圆周上的点到圆心的距离处处相等”后,就容易归纳出圆的定义。点和圆的位置关系也可以从生活中找到原型。已投射的飞镖和靶的位置关系就是一个很好的例子,它是学生既熟悉又比较感兴趣的事物。例1的应用更让学生体会生活中有数学,数学是解决实际问题的工具。
总而言之,本节课确实让学生感到学习数学也就是关注生活,只不过给生活中的这些现象以新的说法。所以抽象的数学也就显得简单了,学生也就更加喜欢学数学了。
2、改变了学习方式。
?新课标》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与交流合作是学生学习数学的重要方式。”为此,我在课堂中给学生动手操作的机会,让每位学生用圆规在本子上画圆,同时要求他们动脑,动口,通过画圆过程体会圆的特点,以便于归纳圆的概念。让四位学生分两组合作在黑板上画圆,还让他们谈谈合作成功的经验(一位一定要固定好圆心,另一位一定要拉紧绳子的另一端粉笔头在黑板上绕一周)。所以得出确定圆需要两个要素即圆心和半径。在必要时,教师也让学生小组合作互相讨论,充分利用集体的智慧,使之能够解决较难的问题。
3、问题设计符合学生的认知规律。
从情境动画片中的车轮到为什么车轮要做成圆形,圆形车轮有什么特点把
圆与车轮作类比有什么相似之处……,这些问题的设计非常连贯,学生也很主动地围绕“问题串”思考,自然地得出了圆的概念,解决了本节课的难点。再是例1的具体应用,再次让学生体验数学来源于生活并用于生活。
九年级【第二篇】
本节课主要内容是学习二次根式的定义和性质,重点是对二次根式的性质1和性质的理解及应用2、难点是性质1和性质2的区别与联系、上完本节课后,我的反思如下:
1、由于本节课是九年级上册第二十一章的内容,是一节新授课,而且所有学生没有教科书,因此如何在没有教科书的前提下,让学生理解并掌握本节内容,对我来说也是一次新的尝试,在备课时我就按照目标让学生明白、过程让学生经历、结论让学生讨论、规律让学生总结的指导原则进行认真备课,尤其对例题与练习题也进行了精心的挑选,按照由易到难由简入繁的顺序安排,并且认真制作了课件,便于学生对重点内容的理解和难点的解决。
2、在实际授课中,在让学生明白了本节学习目标后,通过以下步骤让学生认识、理解、并掌握本节知识:(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的四道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;(3)通过练习让学生得出二次根式的`两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。
3、在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。
4、让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。
5、在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。
6、在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。
通过这次公开课,使我的教学技能得到了很好的锻炼,我在今后的教学中,将继续学习好的一面,对不足之处进行改善,争取使自己的教学水平得到提高。
九年级【第三篇】
1、注重课本知识,查漏补缺。全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
2、注重课堂学习,提高效率。在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
3、夯实基础知识,学会思考。在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
4、注意知识的迁移,学会融会贯通。课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
5、复习形成梯度,选择典型习题。如果说第一阶段是中考复习的基础,是重点,侧重了双基训练,那么第二阶段的复习就是第一阶段复习的延伸和提高,这个阶段的练习题要选择
有一些难度的题,但又不是越难越好,难题做的越多越好,做题要有典型性,代表性,所选择的难题是自己能够逐步完成的,这样才能既激发自己解难求进的学习欲望,又能使自己从解决较难问题中看到自己的力量,增强学习的信心,产生更强的求知欲望。
6、重视基础知识,注重解题方法。基础知识就是初中数学课程中所涉及的概念、公式、公理、定理等。要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应该熟练掌握。
学生如何培养自己的数学能力:
(1)从变更了命题的表达形式上,培养自己思维的深刻性。加强了这方面的训练,可以使我们养成深刻理解知识的本质,从而达到培养自己的审题能力。
(2)从寻求不同的解题途径与思维方式上,培养自己思维的广阔性。对问题解答的思维方式不同,产生的解题方法各异,这样的训练有益于打破形成的思维定势,开拓我们的思路,优化解题方法,从而培养唯美的发散思维能力。
(3)从变换几何图形的位置、形状和大小上,培养唯美思维的灵活性、敏捷性。逐步学会把课本中的例题和习题多层次变换,既加强了知识之间的联系,又激发了自己的学习兴趣,达到既巩固知识又培养能力的目的。
(4)从改变题目的条件和结论上,培养我们思维的批判性。这样的训练可以克服自己静止、孤立地看问题的习惯,促进自己对数学思想方法的再认识,培养我们研究和探索问题的能力。
9、狠抓重点,练习热点。多年来,初中数学中的“方程”“函数”“直线型”“三角形及证明”、“圆”等内容一直是中考的重点考查内容,“方程思想”“函数思想”贯穿中考试卷的始终,所以要重点复习好这部分内容。在全国各地的中考题中,应用题量普遍增加,而应用题也不仅限于“列方程解应用题”,除布列方程解应用题外,“应用性的函数题”“不等式应用题”“统计类的应用题”等都成为中考的热点。同时,近几年的应用题还十分注重分析解决实际问题能力的考查,这在各省市的中考试卷中已经常出现,而且有一定难度,因此我们要适当加强这类应用题的训练,做到有备无患。“开放性题”“探索性题”“阅读理解题”“方案设计题”“动手操作题”是这几年的热点题,这些问题有利于考查我们的探索能力、发散思维和创新意识,这种类型的问题大部分源于课本,有的对知识性要求不高,但题型新,背景复杂,文字表达冗长,不易梳理,所以在最后这段时间里要适当训练一下,以便自己熟悉、适应这类题型。
九年级【第四篇】
1、突出了数学课堂教学中的探索性
关于圆的内接四边形性质的引出,在本教学案例上没有像教材那样直接给出定理,然后证明;而是利用《几何画板》采取了让学生动手画一画,量一量的方式,使学生通过对直观图形的观察归纳和猜想,自己去发现结论,并用命题的形式表述结论。关于圆内接四边形性质的证明,没有采用教师给学生演示定理证明,而是引导学生证明猜想,并做了进一步的完善。这种探索性的数学教学方式在其后的例题讲解中亦得到了进一步的贯彻。这样既调动了学生学习数学的积极性和主动性,增强了学生参与数学活动的意识,又培养了学生的动手实践能力。同时,也向学生渗透了实践——认识——再实践——再认识的辩证观点。一方面,使数学不再是一门单调枯燥,缺乏直观印象的高度抽象的学科,通过提供生动活泼的直观演示,让学生多角度,快节奏地去认识教学内容,达到事半功倍的教学效果;另一方面,计算机所特有的,对数学活动过程的展示,对数学细节问题的处理可以使学生体验到用运动的观点来研究图形的思想,让学生充分感受到发现总是代和解决问题带来的愉悦,培养学生的数学创新意识。
2、引进了计算机《几何画板》技术
本课例在引导学生得出圆内接四边形的性质时,通过使用《几何画板》,从而实现了改变圆的半径,移动四边形的顶点等,从而使初中平面几何教学发生了重大的变化,那就是让图形出来说话,充分调动学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣,而且比过去的教学更能够使学生深刻地理解几何。当然,本教学案例在这方面的探索还是初步的,设想今后通过计算机技术的进一步开发与应用,初中平面几何课能够给学生更多动手的机会,让学生以研究的方式学习几何,进一步突出学生在学习中的主体地位。
3、引入了数学开放题
本教学案例在增大数学课堂教学的探索性,计算机技术进入数学课堂的同时,在学生作业中还增加了开放题(作业2),为学生创造了更为广阔的思维空间,对此应大力提倡。目前,世界各国在数学教育改革中都十分强调高层次思维能力的培养,这些高层次思维能力包括了推理,交流,概括和解决问题等方面的能力。要提高学生这种高层次的思维,在数学课堂教学中引进开放性问题是十分有益的。我国的数学题一直是化归型的,即将结论化归为条件,所求的对象化归为已知的结果。这种只考查逻辑连接的能力固然重要,并且永远是主要部分,但是,它不能是惟一的。单一的题型已经严惩阻碍了学生数学创新能力的培养。在数学教学中还可将一些常规性题目发行为开放题。如教材中有这样一个平面几何题“证明:顺次连接四边形四条边的中点,所得的四边形是平行四边形。”这是一个常规性题目,我们可以把它发行为“画一个四边形是什么样的特殊四边形,并加以证明。”我们还可用计算机来演示一个形状不断变化的四边形,让学生观察它们四条边中点的连线组成一个什么样的特殊四边形,在学生完成猜想和证明过程后,我们进而可提出如下问题:”要使顺次连接四条边的中点所得的四边形是菱形,那么对原来的四边形应有哪些新的要求?如果要使所得的四边形是正方形,还需要有什么新的要求?”通过这些改造,常规题便具有了“开放题”的形式,例题的功能也可更充分地发挥。在此,我们进一步强调培养学生创新意识的数学课堂教学,不应仅仅把开放题作为一种习题形式,而应作为一咱教学思想。这种教学思想反映了数学教学观的转变,这主要反映在开放性问题强调了数学知识的整体性,数学教学的思维性,数学解决问题的过程性,强调了学生在教学活动中的主体作用于以及有利于提高学生学习的乐趣,提高了学生学习的内在动力等。