首页 > 工作范文 > 范文大全 >

高中数学说课稿要点解析(优质10篇)

网友发表时间 1924120

【请您参阅】下面供您参考的“高中数学说课稿要点解析(优质10篇)”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

高中数学说课稿要点解析【第一篇】

开始:各位专家领导,好!

今天我将要为大家讲的课题是。

首先,我对本节教材进行一些分析。

一、教材结构与内容简析。

本节内容在全书及章节的地位:《》是高中数学新教材第册()第章第节。在此之前,学生已学习了,这为过渡到本节的学习起着铺垫作用。本节内容是部分,因此,在中,占据的地位。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:

转载自

二、教学目标。

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1基础知识目标:

2能力训练目标:

3创新素质目标:

4个性品质目标:

三、教学重点、难点、关键。

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。

重点:通过突出重点。

难点:通过突破难点。

关键:

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法。

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生。

“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:,应着重采用的教学方法。即:

五、学法。

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

1、理论:

2、实践:

3、能力:

最后我来具体谈一谈这一堂课的教学过程:

六、教学程序及设想。

1、由引入:

把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:

2、由实例得出本课新的知识点是:

3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

4、能力训练。

课后练习。

使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

7、板书。

8、布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

注意时间掌握。

六、注意灵活导入新知识点。

电脑课件。

使用投影。

根据时间进行增删。

高中数学说课稿要点解析【第二篇】

敬的各位专家、评委:

下午好!

我的抽签序号是____,今天我说课的课题是《_______》第__课时。

我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

(一)地位与作用

______是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面______;另一方面______。同时,__________________。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4) 学生层次参次不齐,个体差异比较明显。

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解_______,初步掌握______。

(2)过程与方法

引导学生通过观察、归纳、抽象、概括,______;能运用____解决简单的问题;使学生领会______的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度与价值观

在______的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

(二)重点难点

本节课的教学重点是________________________,教学难点是_____________________。

(一)教法

基于本节课的内容特点和__学生的年龄特征,按照__市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

(二)学法

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

(一)教学过程设计

教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

(1)创设情境,提出问题。

新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

(2)引导探究,建构概念。

(3)自我尝试,初步应用。

(4)当堂训练,巩固深化。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(5)小结归纳,回顾反思。

(二)作业设计

我设计了以下作业:

(1)必做题

(2)选做题

(三)板书设计

板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!

高中数学说课稿要点解析【第三篇】

导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

(2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探。

索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

(3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

(2)教学难点:椭圆标准方程的建立和推导。

1、动画演示,描绘出椭圆轨迹图形。

2、实验演示。

思考:椭圆是满足什么条件的点的轨迹呢?

1、动手实验:学生分组动手画出椭圆。

实验探究:

保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

2、概括椭圆定义。

引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

思考:焦点为的椭圆上任一点m,有什么性质?

令椭圆上任一点m,则有。

1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

2、研讨探究。

问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点m,有。

尝试推导椭圆的方程。

思考:如何建立坐标系,使求出的方程更为简单?

将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

方案一方案二。

按方案一建立坐标系,师生研讨探究得到椭圆标准方程。

=1(),其中b2=a2-c2(b0);

选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b0)。

教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

1、观察椭圆图形及其标准方程,师生共同总结归纳。

(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

(3)椭圆标准方程中三个参数a,b,c关系:;

(4)椭圆焦点的位置由标准方程中分母的大小确定;

(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

2、在归纳总结的基础上,填下表。

标准方程。

图形a,b,c关系焦点坐标焦点位置。

在x轴上。

在y轴上。

例1、求适合下列条件的椭圆的标准方程。

(1)两个焦点的坐标分别是,椭圆上一点p到两焦点距离和等于10。

(2)两焦点坐标分别是,并且椭圆经过点。

例2、(1)若椭圆标准方程为及焦点坐标。

(2)若椭圆经过两点求椭圆标准方程。

(3)若椭圆的一个焦点是,则k的值为。

(a)(b)8(c)(d)32。

例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点p向x轴作垂线段,求线段中点m的轨迹。

1、写出适合下列条件的椭圆标准方程。

(1),焦点在x轴上;

(2)焦点在x轴上,焦距等于4,并且经过点p;

2、若方程表示焦点在y轴上的椭圆,则k的范围。

3、已知b,c是两个定点,周长为16,求顶点a的轨迹方程。

4、已知椭圆的焦距相等,求实数m的值。

5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

6、已知p是椭圆上一点,其中为其焦点且,求三解形面积。

师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

课本第96页习题§8。1第3题、第5题、第6题。

课后思考题:

1、知是椭圆的两个焦点,ab是过的弦,则周长是。

(a)2a(b)4a(c)8a(d)2a2b。

2、的两个顶点a,b的坐标分别是边ac,bc所在直线的斜。

率之积等于,求顶点c的轨迹方程。

2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

将本文的word文档下载到电脑,方便收藏和打印。

高中数学说课稿要点解析【第四篇】

(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容。

(2)包含知识点:点到直线的距离公式和两平行线的距离公式。

1-2教材所处地位、作用和前后联系。

本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。

可见,本课有承前启后的作用。

1-3教学大纲要求。

掌握点到直线的距离公式。

1-4高考大纲要求及在高考中的显示形式。

掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。

1-5教学目标及确定依据。

教学目标。

(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。

(2)培养学生探究性思维方法和由特殊到一般的研究能力。

(3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。

(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。

确定依据:

中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)。

1-6教学重点、难点、关键。

(1)重点:点到直线的距离公式。

确定依据:由本节在教材中的地位确定。

(2)难点:点到直线的距离公式的推导。

确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。

分析“尝试性题组”解题思路可突破难点。

(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。

2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。

确定依据:

(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。

(2)事物之间相互联系,相互转化的辩证法思想。

2-2教具:多媒体和黑板等传统教具。

3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。

一句话:还课堂以生命力,还学生以活力。

3-2学情:

(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。

(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。

(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。

3-3学具:直尺、三角板。

学生完成反思性学习报告,书写要求:

(1)整理知识结构。

(2)总结所学到的基本知识,技能和数学思想方法。

(3)总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因。

(4)谈谈你对老师教法的建议和要求。

作用:

(1)通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的`一个心理活动过程。

(2)报告的写作本身就是一种创造性活动。

(3)及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。

5.板书设计。

(略)。

6.教学的反思总结。

心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。

高中数学说课稿要点解析【第五篇】

《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。

基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。

(一)教材的地位和作用。

有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。

(二)教学目标。

1、联系生活情境了解扇形统计图的特点和作用。

2、能读懂扇形统计图,从中获取有效的信息。

3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。

(三)教学重点:

1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。

2、认识折线统计图,了解折线统计图的特点。

(四)教学难点:

1、能从扇形统计图中获得有用信息,并做出合理推断。

2、能根据统计图和数据进行数据变化趋势的分析。

本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。

1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。

2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。

《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。

(一)复习引新。

1、复习旧知。

提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?

2、引入新课。

(二)自主探索,学习新知。

新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。

三、课堂总结。

四、布置作业。

五、板书设计:

高中数学说课稿要点解析【第六篇】

二面角是我们日常生活中经常见到的、很普通的一个图形。“二面角”是新编教材《数学》第二册(下a)中的内容,它在学生学过空间中异面角、线面角之后,又要重点研究的一种空间的角,它也是学生进一步研究多面体和旋转体的基础。因此,它起着承上启下的作用。同时,通过本节课的学习也可以培养学生的空间想象能力和逻辑思维能力,为培养学生的创新意识和创新能力提供了一个良好的契机。

2.教学目标。

(1)知识目标:使学生掌握二面角的概念,二面角的平面角的定义、作法以及这些知识的初步应用。

(2)能力目标:培养学生的空间想象能力、逻辑思维能力、知识迁移能力及运用数学知识和数学方法观察、研究现实现象的能力。

(3)德育目标:通过对实际问题的分析、探究,激发学生的学习兴趣,并让学生明白:数学和生活是密不可分的。

(4)情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3.重点、难点及关键。

重点:二面角的平面角的定义及其作法。

难点:面角的平面角的作法。

关键:求作二面角的平面角。

二、教学方法和手段。

培养学生数学素质,首先数学课堂教学要素质化,即在课堂教学过程中,加强知识发生过程的教学,充分调动学生思维的主动性、积极性;有效地渗透数学思想方法,发展学生个性品质,从而达到提高学生整体的数学素养的目的。根据这样的原则和所要完成的教学目标,我采用如下的教学方法和手段:

(1)教学方法:观察发现、启发引导、探索相结合的教学方法。启发、引导学生积极的思考并对学生的思维进行调控,帮助学生优化思维过程;在此基础上,提供给学生交流的机会,学生学会对自己的数学思想进行组织和澄清,并能清楚地、准确地表达自己的数学思想;能通过对其他人的思维和策略的考察扩展自己的数学知识和使用数学语言的能力。学生会自觉地、主动地、积极地学习。

(2)教学手段:利用多媒体教学手段。多媒体以声音、动画等多种形式强化对学生感官的刺激,这一点是粉笔和黑板所不能比拟的,采用这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标体现的更完美。

三、学法指导:观察分析、猜想证明及类比联想是学法指导的重点。让学生观察、思考后,总结、概括、归纳的知识更有利于学生掌握;为了加深知识理解、掌握和更灵活地运用,运用类比联想去主动的发现问题、解决问题,从而更系统地掌握所学知识,形成新的认知结构和知识网络,让学生真正地体会到在问题解决中学习,在交流中学习。这样,可以增进热爱数学的情感,应用数学的自信心和形成新的学习动力。

高中数学说课稿要点解析【第七篇】

2、教材所处地位、作用。

3、教学目标。

(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性。

的方法;

4、重点与难点。

教学重点(1)函数单调性的概念;

(2)运用函数单调性的定义判断一些函数的单调性.。

教学难点(1)函数单调性的知识形成;

(2)利用函数图象、单调性的定义判断和证明函数的单调性.。

二、教法分析与学法指导。

本节课是一节较为抽象的数学概念课,因此,教法上要注意:

4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.。

在学法上:

教学。

环节。

设计意图。

问题。

情境。

(播放中央电视台天气预报的音乐)。

满足在定义域上的单调性的讨论.。

3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.。

4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.。

-->

高中数学说课稿要点解析【第八篇】

抛物线焦点性质的探索(说课)。

一、

1教材的地位与作用“抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。

2教学目的全日制普通高级中学《数学教学大纲》第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本·必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以《几何画板》为教学工具与学习工具,设计了一堂《抛物线焦点性质的探索》,具体目标如下:

(2)能力目标:使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。

(3)情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。

3教学内容、重点、难点及关键本节安排两节课,

第一节课:主要内容是利用《几何画板》探索抛物线的有关性质;

第二节课:证明第一节所得到的有关性质。

重点:

(1)如何利用《几何画板》探索、发现抛物线焦点的性质;

(2)如何证明这些性质。

难点;

(1)如何利用《几何画板》探索、发现抛物线焦点的'性质;

(2)如何证明这些性质。

学生在网络教室(每人一机),其中装有《几何画板》软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。

学生在网络教室(每人一机)中有几何画板软件,学生通过教师提供的网络,自已阅读,下载有关,利用《几何画板》的操作、试验、猜想,通过自已的研究获得结论,并互相讨论观察到的现象、交流研究结果。

4.1使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型问题1回顾一下抛物线的定义,并根据抛物线的定义思考用《几何画板》如何作出焦点在x轴上的抛物线图象。由于创设了一个创作的《几何画板》的窗口及网络窗口,学生通过网络学习,得到以上问题的多种作法,以下就其中的一种作法作为探索、研究抛物线焦点性质的基本图形。

高中数学说课稿要点解析【第九篇】

开始:各位专家领导, 好!

今天我将要为大家讲的课题是

首先,我对本节教材进行一些分析

,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:

转载自

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1 基础知识目标:

2 能力训练目标:

3 创新素质目标:

4 个性品质目标:

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

重点: 通过 突出重点

难点: 通过 突破难点

关键:

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生

“知其然”而且要使学生“知其所以然”,

我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:

,应着重采用 的教学方法。即:

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

1、理论:

2、实践:

3、能力:

最后我来具体谈一谈这一堂课的教学过程:

1、由 引入:

把教学内容转化为具有潜在意义的问题,让学生产生强烈的'问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:

2、由实例得出本课新的知识点是:

3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

4、能力训练。

课后练习

使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

7、板书。

8、布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

注意时间掌握

电脑课件

使用投影

根据时间进行增删

高中数学说课稿要点解析【第十篇】

本节课是《普通高中课程标准实验教科书数学》(人民教育出版社、课程教材研究所a版教材)选修2-2中第§节.作为导数概念的下位概念课,它是在学生学习了上位概念——平均变化率,瞬时变化率,及刚刚学习了用极限定义导数基础,进一步从几何意义的基础上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容.导数的几何意义的学习为下位内容——常见函数导数的计算,导数是研究函数中的应用及研究函数曲线与直线的位置关系的基础.因此,导数的几何意义有承前启后的重要作用.

知识与技能目标。

(1)知道曲线的切线定义,理解导数的几何意义;。

——让学生感知和初步理解函数在处的导数的几何意义就是函数的图像在处的切线的斜率,即=切线的斜率.

(2)导数几何意义简单的应用.

——用导数的几何意义解释实际生活问题,初步体会“逼近”和“以直代曲”的数学思想方法.

过程与方法目标。

(1)回顾圆锥曲线的切线的概念,复习导数概念,寻找在处的瞬时变化率的几何意义;。

(3)通过学生经历或观察感知由割线逼近“变成”切线的过程,理解导数的几何意义;。

(5)通过分析导数的几何意义,研究在实际生活问题中,用区间较小的范围的平均变化率,来解决实际问题的瞬时变化率.

情感态度价值观目标。

(3)增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.

重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.

难点:对导数几何意义的理解与掌握,在每处“附近”变化率与瞬时变化率的近似关系的理解.

关键:由割线趋向切线动态变化效果,由割线“逼近”成切线的理解.

相关推荐

热门文档

48 1924120