首页 > 工作范文 > 范文大全 >

2023年数学解题常用方法 数学解题方法总结样例

网友发表时间 1616549

【导读预览】此篇优秀范文“2023年数学解题常用方法 数学解题方法总结样例”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

数学解题常用方法 数学解题方法总结篇1

八年数学下册教学计划

推荐度:

八年级数学教案

推荐度:

八年级数学教学反思

推荐度:

八年级数学工作计划

推荐度:

八年级数学下册教学计划

推荐度:

相关推荐

数学题是透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生的。下面是网友为大家分享的“2023年数学解题常用方法 数学解题方法总结样例”,欢迎大家的阅读。

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工分享的“2023年数学解题常用方法 数学解题方法总结样例”,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

例1:把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)

思维方法是:图示法。

思维方向是:锯几次,每次用几分钟。

思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。

例2:判断等腰三角形中,点d是底边bc的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略)

思维方法:图示法。

思维方向:先比较面积,再比较周长。

思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段ad比曲线ad短,所以“图甲的周长比图乙的周长长”是错误的。

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

例如,教学“比例尺”时,教师创设“学生出题考老师”的.教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

例3:找规律填数。

(1)1、4、 、10、13、 、19;

(2)2、8、18、32、 、72、 。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生。

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:“应当先学会观察,不学会观察永远当不了科学家。”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

例4:找出下列各题错在哪里,并改正。

(1)25×16=25×(4×4)=(25×4)×(25×4);

(2)18×36+18×64=(18+18)×(36+64)

例5:直接写出下列各题的得数:

(1)+=

(2)+=

(3)125×57×(4)(351-37-13)÷5=

科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:

(1)面--形状、个数、面与面之间的关系;

(2)棱--棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);

(3)顶点--顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

这是一年级下学期的一道思考题,如果只观察不思考,这道题目让干什么就不知道。

针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归一、倍比和归总算法、行程、工程、消同求异、平均数等。

例6:已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法。

例7:见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题。

例8:甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。

通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。

例9:求12和9的最小公倍数。求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的。但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”。现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数。

12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了。

例10:期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分。想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗?

思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。

思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。放缩法有时运用在估算和验算上。

例11:检验下列计算结果是否正确?

(1)×= (2)17485÷=3609

对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误。对于(2)用最高位估计,把17看作18,把看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确。

例12:把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。

这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

在初中阶段的学习中要保证速度,这在高考的意义是非凡的。如何提高解题的速度有方法。在考试时,我们常常感到时间很紧,试卷还没来得及做完,就到收卷时间了,虽然有些试题,只要再努一把力,我们是有可能做出来的。这其中的原因之一,就是解题速度太慢。

几乎每个学生都知道,要想取得好成绩,必须努力学习,只有加强练习,多做习题,才能熟能生巧。可是有些学生天天趴在那里做题,但解出的题量却不多,花了大量的时间,却没有解出大量的习题,难道不应找一找原因吗?何况,我们并不比别人的时间更多。试想,如果你的解题速度提高10倍,那会是怎样一种情景?解题速度提高10倍?可能吗?答案是肯定的,完全可能。关键在于你想与不想了。

那么,究竟怎样才能提高解题速度呢?

你应该知道,解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。我指导学生按此方法学习,几乎所有的学生都大大提高了解题的速度,其效果非常之好。

例如,有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是数学题中要用到的一个物理概念,而我们对此已不是十分清晰了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。这时我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。

解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。

在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。

再过1个多月就要走向没有硝烟的战场——中考。同学们,你们做好准备了吗?xx中学高级教师李xx就数学复习最后应注意的方面有几点建议。

李xx老师表示,在最后这段时间,有的同学从思想到行动都放松了很多,没了方向,没了目标,认为自己没有什么希望了,索性在老师的“驱使”下艰难前行,殊不知,数学复习本身是一个查漏补缺的过程,我们只有主动参与,才能发挥自己的主观能动性。

李xx老师提醒说,数学复习是一个不断反思的过程,会在教师的指导下做一定量的数学习题。首先一定要信任老师,要知道凡是有经验的数学教师上课讲的内容绝对不仅仅在讲一道数学题,而是会用一道数学题贯穿一些数学思想、解题技巧,达到举一反三的效果,自己的“练”加上老师的“点”才能提高数学解题能力。其次要用一个正确的态度面对这些数学习题,要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍,上课时不能只听老师讲,要敢于质疑,积极提出自己新颖独到的方法,与师生共享,既能体会成功的喜悦,又能培养创新能力。对于出错的题目一定要找出错误的原因,及时订正。最后,准备一个纠错本,把自己的问题集中在一起,不时拿出来看一看,想一想,做一做,相信在中考时你平时常犯的“病”一定会治愈!第三、要用规范的书写来完成这些数学习题。

李xx老师表示,值得注意的是,考生一定要注重基础题的训练,在目前的数学复习中,相信老师都会加大题目的深度和广度,会用小测、周考等方式强化基础题的训练,现在的你千万不要轻视,必须把准确性放在第一位,而不是一味地追求速度或技巧,一定要过好审题关、表达关和书写关,为了保证中考试题能“正确、迅速、整洁”地完成,要做到“小题大做”,只要自己会做的题目就不要做错,在数学中考中,不会出现超纲的题,难题都是由基础知识堆积而成的,所以掌握好基础知识,就能做到易题不错,难题会做,小题快做,大题稳做。

还有就是考生在注重基础题训练的同时,更不能忽视我们所说的综合题的训练,李xx老师认为,这类题其实就是由有深度和广度的基础题演变而来的,从现在开始到中考前,突破15-20道这样的综合性题目,不仅你的数学解题能力有所提高,你还会发现原来学好数学这么简单!

s("content_relate");

数学解题八种方法相关文章:

奥数解题6种方法

08-07

提高解题效率的四种方法中考数学备考辅导

08-19

数学的解题方法

05-05

数学解题方法

05-29

初中数学解题方法:换思路解题

03-30

小学数学解题方法

03-28

初中数学解题方法

03-30

数学解题方法与技巧

01-19

数学卷子解题方法

05-08

相关推荐

热门文档

48 1616549