首页 > 工作范文 > 范文大全 >

人教数学六年级数学教案(优推4篇)

网友发表时间 633218

【导读预览】此篇优秀范文“人教数学六年级数学教案(优推4篇)”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

人教数学六年级数学教案【第一篇】

从知识角度分析为什么难。

打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。

从学生角度分析为什么难。

学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。

在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。

一、复习旧知,引入新课。

1、提问“一件物品打九折出售”表示什么意思?

2、生活中,是不是所有的优惠都是以“几折”来表示的呢?

3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)

二、教学新知。

(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。

1、根据这些信息,学生提问题。

教师板书:

(1)在a、b两个商场买,各应付多少钱?

(2)哪个商场省钱?

2、分析问题,理解题意。

(1)结合题目给出的数学信息,哪些是关键的?

(2)怎样理解“满100元减50元”?

(3)不足100元的部分呢?怎么办?

3、独立思考,尝试解决。

师:请同学们独立思考,看能否解决黑板上的这两个问题?

4、交流并汇报方法。

师:谁来说说自己的解决方法?

学生展示自己的算式,并解释。

5、启发思考,辨析原因。

(2)什么情況下两种优惠是一样的呢?

(1)“满100减50”,就是够100才能减50,不够则不减。

(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。

(3)售价刚好是整百元的时候,两种优惠结果才是一样的。

三、练习巩固,提高能力。

1、做一做。

某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

(1)在a、b两个商场买,各应付多少钱?

(2)选择哪个商场更省钱?

同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。

人教数学六年级数学教案【第二篇】

教学目标:

1、经历自主回顾和整理“数的认识”的过程。

2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。

3、积极参加自主分享的“人教数学六年级数学教案(优推4篇)”,获得成功的学习体验。

课前预习:

小组合作,交流整理:

回顾以前学过那些数,各举五例。分析不同类数之间有何关系。

教学过程:

一、结合实例,引导学生回忆数的认识

1、回顾数的意义。

师:你学过那些数?

(生回答)

师出示卡片,生齐读。师:举例说明这些数可表示什么?

(生回答)

2、数的分类。

完成问题(1)。

师:把上面的数填到合适的位置

(生回答)

师:每种类型的数,除了上面几种类型,你还能举出其它的吗?

(生回答)

3、数的互化

呈现表格,完成数的互化,交流做法。

4、数的大小比较。

学生自主完成。

5、适时小结。

师:通过刚才的练习,我们复习到数的哪些知识?

(生回答)

二、整理回顾有关倍数和因数的知识

1、引出问题。

(生回答)

以上问题,我们运用了哪些数学知识呢?(倍数和因数)

明确:我们一起回顾和整理倍数和因数。

2、小组合作,梳理知识。

师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组分享的“人教数学六年级数学教案(优推4篇)”,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。

三、复习正数和负数

师出示亮亮家4月份收支情况记录。

学生阅读题目内容。

出示问题(1)。

提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)

出示问题(2)。

让学生举例说明什么是正数和负数。

学生自主完成问题(2)。

全班交流。

交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。

四、人民币上的号码

1、让学生拿出自己身上的人民币。

2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。

五、课堂小结

这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?

六、课堂作业

教学目标

1、经历自主回顾和整理整数、小数、分数四则运算的过程。

2、能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。

3、体验自主整理数学知识的乐趣,提高计算能力。

课前回顾:

我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。

教学过程:

一、引导学生回顾和整理四则运算

1、师:回想一下我们学过哪些计算?

生回答。

小组长汇报本组在课前练习中出现的问题。

2、议一议

出示问题(1)生归纳整理。

出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。

生整理汇报。(注意提示0不能做除数)

3、各部分间的关系。

师:加法各部分间有什么关系?

生回答。

引导学生自己总结减法各部分间的关系。

师归纳出加减法互为逆运算。

同样的方法总结乘除法的关系。

说一说

师:上述关系在计算中有哪些应用?

启发学生回答,(进行验算、解方程等)

二、复习四则运算和运算律

1、师:我们学过的运算律有哪些?

小组讨论,自主总结,并写出字母表达式。

先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。

3、估算。

先让生独立思考并判断,再回答是如何判断的。

师生共同讨论怎样想,需要几个步骤。

计算问题(2)时可用竞赛的方式,看谁算得又对又快。

三、课堂总结

师:这节课我们整理和回顾了什么内容?需要注意什么?

人教数学六年级数学教案【第三篇】

教科书第55页例2,课堂活动第2题,练习十五第4~7题。

1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。

2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。

3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。

4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

5.在按比例分配的过程中,感受分配方案的简洁美、理性美。

6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

重点:把两个数比的问题的解题方法推广到三个数连比的问题。

难点:理解三个数连比的问题的解题方法。

学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

导入新课

1.填空。(多媒体出示题目)

(1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。

(2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。

学生回答反馈,说说怎样思考,集体评价。

2.引入谈话:怎样解决按比例分配的问题?

反馈.

交流后,老师及时做出评价)

在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。

独立思考再交流方法和结果,集体评价。

举例,分组讨论、反馈、交流。

1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)

2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?

生1:前面所做的题都是两个量的比,这道题是三个量的比。

生2:可以仿照上节所学的按比例分配方法去解。

3.学生尝试解答,教师巡视。

4.展示学生解法,说出解题思路。

方法1:220÷(2+3+6)=20(吨)

需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)

答:需要水泥40吨,需要沙子60吨,需要石子120吨。

方法2:总份数:2+3+6=11

需要水泥的吨数:220x2/11=40(吨)

需要沙子的吨数:220x3/11=60(吨)

需要石子的吨数:220×6/11=120(吨)

方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。

解:设每份是x吨.

2x+3x+6x=220

11x=220

x=20

需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)

5.议一议:怎样解决按比例分配的问题?

学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。

学生交流获取的信息。

讨论交流异同。

尝试解答,再展示交流解题思路。

独立思考,再小组交流、小结解决按比例分配问题的一般方法。

在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

在按比例分配的过程中,感受分配方案的简洁美、理性美。

1.课堂活动第2题。

根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。

教师组织学生讨论:这道题与前面所做的题有什么区别?

引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。

学生讨论后尝试独立解题。完成后交流解决问题的方法。

再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。

学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

学生讨论找到方法。

独立解题,再交流解题方法。

讨论交流得出结论。

经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

想一想,今天学习的知识与昨天有什么不同?又有什么相同?

谈收获。

练习十五第4―7题。

独立完成。

人教数学六年级数学教案【第四篇】

教学内容:冀教版《数学》六年级上册第92、93页。

教学目标:

1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。

2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。

3、感受数学在解决问题中的价值,培养数学应用意识。

课前准备:一个蒙古包图片

教学过程:

1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。

师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?

生:蒙古包。

师:对,蒙古包。看,老师带来了一张蒙古包的图片。

图片贴在黑板上。

师:观察这个蒙古包,你都想到了哪些和数学有关的问题?

2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。

师:如果要计算蒙古包的占地面积,怎么办?

生:测量出蒙古包的直径,就能计算出它的占地面积。

生:不好测量。

生:测量出周长。

师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是米。

板书:周长米。

1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。

师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。

学生讨论。

师:谁来说说已知圆的周长是多少,怎样求圆的面积?

生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。

学生说不完整,教师参与交流。

师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。

学生独立计算,教师巡视并指导。

生:我先计算出蒙古包的半径,列式2××r=求出r=4,再计算蒙古包的占地面积×42=(平方米)

学生说的同时,教师板书:

蒙古包的半径:

2××r=

r=÷

r=4

蒙古包的占地面积:

×42=(平方米)

如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。

1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。

师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。

学生独立完成,教师个别指导。

师:谁来说一说你的做法,这个蓄水池的占地面积是多少?

生:我先求出这个蓄水池的半径×2×r=求出r=5,再计算蓄水池的占地面积:×52=(平方米)

师:看第2题,求花池的面积。自己解答。

交流时,请学习稍差的学生回答。

答案:×2×r=

r=3

×32=(平方米)

学生完成后,指名汇报。答案:

×2×r=

r=16

×162=(平方厘米)

生:就是把树锯断后的圆面。

师:树木的周长相当于这个横截面的什么?

生:周长。

师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。

学生读题。

学生可能出现不同意见,都不做评价。

1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。

师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。

学生合作研究,教师参与指导。

学生可能出现不同的假设。如:(1)假设铁丝长1米。

正方形的边长:1÷4==25(厘米)

正方形面积:25×25=625(平方厘米)

圆半径:100÷2÷≈16(厘米)

圆面积:×162≈803(平方厘米)

结论:圆的面积大

(2)假设铁丝长2米。

正方形的边长:2÷4==50(厘米)

正方形面积:50×50=2500(平方厘米)

圆半径:200÷2÷≈32(厘米)

圆面积:×322≈3215(平方厘米)

结论:圆的面积大

(3)假设铁丝长4米。

正方形的边长:4÷4=1(米)

正方形面积:1×1=1(平方米)

圆半径:4÷2÷≈(米)

圆面积:×≈(平方米)

结论:圆的面积大

3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。

师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。

生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。

相关推荐

热门文档

48 633218