平方差公式的学习方法指导实用4篇
【导言】此例“平方差公式的学习方法指导实用4篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
平方差公式运用1
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23
[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解题过程]
x^2-y^2=1991
(x+y)(x-y)=1991
因为1991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同时也可以是负数
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有时应注意加减的过程
熟读唐诗三百首,不会做诗也会吟。上面这4篇平方差公式的学习方法指导就是山草香为您整理的平方差公式范文模板,希望可以给予您一定的参考价值。
平方差公式注意事项2
1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的 可以是具体的数,也可以是单项式或多项式。
平方差公式常见错误3
平方差公式中常见错误有:
①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
②混淆公式;
③运算结果中符号错误;
④变式应用难以掌握。
三角平方差公式
三角函数公式中,有一组公式被称为三角平方差公式:
(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)
(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)
这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
高考数学平方差公式4
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式