首页 > 工作范文 > 范文大全 >

数学知识点总结与思考(精选8篇)

网友发表时间 1999750

【请您参阅】下面供您参考的“数学知识点总结与思考(精选8篇)”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

数学知识点总结与思考【第一篇】

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。

(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。

判定两个平面垂直的方法:(1)利用定义。

(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

夹在两个平行平面之间的平行线段相等。

经过平面外一点有且仅有一个平面与已知平面平行。

两条直线被三个平行平面所截,截得的对应线段成比例。

将本文的word文档下载到电脑,方便收藏和打印。

转载自

数学知识点总结与思考【第二篇】

(2)导数的四则运算。

(3)复合函数的导数。

设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即。

1、数列的极限:

粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于a,这就是数列极限的描述性定义。记作:=a。如:

2、函数的极限:

1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:

函数在点处的导数是曲线在处的切线的斜率,

即k=,相应的切线方程是。

注:函数的导函数在时的函数值,就是在处的`导数。

例、若=2,则=()a—1b—2c1d。

(一)曲线的切线。

函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:

(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)。

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

数学知识点总结与思考【第三篇】

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

数学知识点总结与思考【第四篇】

则有以下五种关系:

1、dr+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。

2、d=r+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

3、d=r—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

4、d。

5、d。

1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。

2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

数学知识点总结与思考【第五篇】

三忌“好高骛远,忽视双基”

很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。

有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。

最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。

四忌“敷衍了事,得过且过”

以下是对某校届高三300名同学关于作业问题的两项调查:(数值为人数比例:做到的/总人数)。

你做作业是为了什么?

检测自己究竟学会了没有占91/%。

因为老师要检查占143/%。

怕被家长、老师批评的占38/%。

说不清什么原因占28/%。

你的作业是怎样完成的?

复习,再联系课上内容独立完成占55/%。

数学知识点总结与思考【第六篇】

主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

数列这个板块,重点考两个方面:一个通项;一个是求和。

在里面重点考察两个方面:一个是证明;一个是计算。

概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。

这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。

同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

数学知识点总结与思考【第七篇】

1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。

2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。

3、课后复习:通预习一样,也是行之有效的方法。

4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

6、建立纠错本:把经常出错的.题目集中在一起。

7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。

数学知识点总结与思考【第八篇】

1、直接法:

直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

2、分离参数法:

先将参数分离,转化成求函数值域问题加以解决。

3、数形结合法:

先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

相关推荐

热门文档

48 1999750