首页 > 工作范文 > 范文大全 >

四年级数学教案设计汇聚【最新8篇】

网友发表时间 1630894

【请您参阅】下面供您参考的“四年级数学教案设计汇聚【最新8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

四年级数学教案设计【第一篇】

1.使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。

2.使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。

教学过程。

一、创设情境,激趣引入。

谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。

课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。

提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)。

谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)。

二、设疑引探,自主建构。

1.操作感受。

谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。

学生在小组内活动,教师巡视并指导。

引导:仔细观察拼出的结果,你发现了什么?

通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。

提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)。

2.分类建构。

谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。

学生活动,教师巡视。

反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)。

提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)。

提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)。

再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)。

谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。

学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。

提问:在2~20各数中,哪些数是素数?哪些数是合数?

3.交流质疑。

谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?

根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。

三、巩固练习,深化认识。

1.试一试。

出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。

先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。

2.做想想做做第2题。

先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。

3.做想想做做第3题。

学生独立完成判断,并说明理由。

四、全课总结。

提问:通过今天的学习,你知道了哪些知识?有什么新的收获?

五、举例检验。

学生举例检验。

谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!

[总评]。

在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。

在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。

四年级数学教案设计【第二篇】

(1)知识与技能:学生在已有的知识基础上经历集合思想的形成过程,初步理解集合知识的意义。能结合具体情境体会用“韦恩图”解决有重叠部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重叠部分的问题。

(2)过程与方法:通过观察、猜测、操作、交流等活动,学生在合作学习中感知集合图的形成过程,能用集合图分析生活中简单的有重复部分的问题。

(3)情感态度价值观:在解决实验问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,体会数学的严谨性,感受数学与生活的联系,提高学习数学的兴趣。

集合思想方法解决简单的实际问题。

集合思想方法的形成过程。

“学习之星”和“劳动之星”的获奖奖励,“智慧星”和“守纪星”的获奖奖励,集合名称的磁板,获奖学生名字的卡片,课件。

一、脑筋急转弯导入新课师:今天这节课上老师会根据同学们的表现,评选出智慧星和守纪星。想要获得智慧星,那你课上需要积极动脑、认真思考。想要获得守纪星,那你课上就要认真听讲、坐姿端正、书写规范。看谁这节课既能获得智慧星又能获得守纪星。

谈话:同学们,你们玩过脑筋急转弯的游戏吗?想不想玩一玩?出示脑筋急转弯——理发师的困惑:

教师边讲解,边用课件播放声音。

师问:进来的怎么只有三个人呢?你们能帮理发师解决他的困惑吗?生:略师:在这里爸爸有双重身份,他既是孩子的爸爸又是爸爸的孩子。身份在这里重复了一次,所以只有3人。(板书:既??又??)像这样的问题,数学上称之为“重叠问题”今天就让我们一起去研究这类问题。

二、集合圈的深入探究师:根据同学们上一周的表现,李老师评选出了7名学习之星和5名劳动之星,那你们知道一共有多少名同学获奖了吗?(12名)师:有不同意见吗?生:没有师:那你们想不想知道都有谁获奖了?(课件展示获奖学生名单)师:从这张光荣榜里,你发现了什么?生:xxx既获得了“学习之星”又获得了“劳动之星”。

师:你这个词用的真好,既??又??(板书)这样说我们就听得很明白了,谁还能像这位同学一样说说你的发现?生1:xxx既获得了“学习之星”又获得了“劳动之星”。

师:谁能把这两个同学的发现连起来说说?生2:

和都既获得了“学习之星”又获得了“劳动之星”。

师:你真会表达。下面请获奖的同学赶快到前面来,老师给大家颁奖。学习之星站到老师的右手边,劳动之星站到老师的左手边。你们俩应该站到哪儿?师:咦,我发现了一个问题,刚才我们明明算了12名同学获奖了,怎么才来了10个人呢?那两个人呢?(学生举手,迫不及待的回答问题。)你们有话想说,那好,你来说说?生:

和都既获得了“学习之星”又获得了“劳动之星”,所以他们两人在获奖名单里重复了。

师:哦,原来是这样。看来同学真是理解了这两个同学的位置了,那这两边呢?谁来说说右边同学的获奖情况?生:右边同学获得了“学习之星”。

师:“学习之星”还有中间的两个同学呢,我们只描述这5个人的获奖情况。

生:这5个人单单只获得了“学习之星”。

师:那谁来说说左边这3位同学的获奖情况?生:左边这3位同学只获得了“劳动之星”。

师:真不错,这下我们弄清楚了。那老师开始颁奖了,左边的同学每人发一颗“学习之星”,右边的同学每人发一颗“劳动之星”,中间的同学每人既发一颗“学习之星”又发一颗“劳动之星”。(师边说边给学生发小星星)师:那刚开始我们算得有12名同学获奖了,在今天的这种获奖的情况下是不对的,你能用画图的方法表示出今天有10位同学获奖了吗?先听清要求:画图时,要画清同学们的获奖情况,还要让我们能直观的看出一共有多少名同学获奖了,注意老师已经把这些同学的名字编好了相应的序号(课件展示),不要写这些同学的名字了,我们只用序号来表示同学就可以了。

生:独立画图。

师:画好的同学可以小组相互交流一下,看看小伙伴们画的图有没有值得你借鉴的地方。(师巡视学生画的图,选择有代表性的图到前面投影。)师:老师选择了几位同学画的图,下面请这几位同学分别到前面来讲一讲他们画的图。

师:像这种重叠问题,我们可以用韦恩图来表示。它是英国的数学家韦恩在1881年发明的,后来人们为了纪念他把这个图叫作韦恩图,也叫集合圈。(板书:集合)师:下面就请同学们跟老师一起用集合圈的方式来画画图。(师边讲边在黑板上画集合圈)先画一个封闭的椭圆表示“学习之星”,画好之后贴上这个集合圈的名字是“学习之星”。接下来该画什么了?生:“劳动之星”的集合圈。

师:那“劳动之星”的集合圈我们应该画在什么位置呢?师:为什么要把“劳动之星”的集合圈有一部分画到“学习之星”的集合圈里面呢?生:因为有人既获得了“学习之星”又获得了“劳动之星”。

师:再画一个封闭的椭圆表示“劳动之星”。下面我们把这些获奖同学的名字贴在相应集合圈的位置里。

师:这个集合圈我们就算画好了,那集合圈的各部分表示什么呢?我们一起来看大屏幕。阴影部分表示什么?师:根据我们画的集合圈在小卷子上列出算式(生列算式)。

师:谁来说说你怎么列的算式,并给大家讲讲你为什么这样列算式?生:我列的算式是7+5-2=10(名),“7”表示7名“学习之星”,“5”表示5名“劳动之星”,减去“2”是因为有2名同学重复了。

师:你讲的真清楚,大家都听明白了吧。

师:谁还有不同的方法?你们看这个图我们相当于把这些获奖同学分了几部分?(3部分)哪三部分?分别是几人呢?那你会列算式了吗?三、问题拓展师:这个问题我算式弄清楚了,现在老师又有想法了,我们下周还要选出7名“学习之星”,5名“劳动之星”,你们帮老师想一想有可能有多少名同学会获奖吗(出示课件)?今天的获奖情况是有2名同学重复了,有10个同学获奖了。那下次获奖可能多少名同学重复呢?生:3名,1名。

师:最多有多少名同学重复获奖?生:5名。

师:为什么?生:因为“劳动之星”只有5人,所以最多只能有5人重复获奖了。

师:谁能按照一定的顺序把下周我们班获奖的重复情况都想全了,并说一说。

生:没有重复、重复1人、重复2人、重复3人、重复4人、重复5人(随着学生说,课件出示)。

师:那每种情况下有多少人获奖呢?分组做师:没有人重复获奖的情况。

生:7+5=12(人)师:那这个集合图该怎么画呢?生:画两个单独的圈,没有重复的部分。

师:(找学生说重复1人、重复3人、重复4人、重复5人的算式,并让学生说3/4清这样列式的原因。)那重复5人的时候,这个集合圈又该怎样画呢?生:“劳动之星”的圈都跑到“学习之星”的圈里去了(课件展示)。

师:那这个部分表示什么意思?有几人?(课件出示如下)学习之星生:这部分表示只获得了“劳动之星”,有2人。

师:我们来观察这些算式,你发现了什么?生:有几个人重复了,就去掉几人。

四、练习提升师:班里获奖同学的情况,我们都弄清楚了,真了不起,那今天没有获奖的同学呢?比如xxx,我想把他的名字也贴在黑板上,我应该贴在什么位置上。(贴在集合圈的外面)为什么啊?贴在外面表示什么呢?师:所以我们班里其他没有获奖的同学,都可以贴在获奖集合圈的外面。现在班里每位同学都找到了自己的位置,下面我们来帮同学们找到自己的位置。

这节课获得智慧星的有人,获得守纪星的有人,两项都获得的有人,两项都没有获得的有人,来上课的学生一共有多少人?师:请同学们,在小卷上独立完成,要求画出集合圈,并列算式。

六、课堂小结师:

今天我们学习了重叠问题,还用集合知识解决了不少问题,谁来说说你这节课的收获?

生1:我学会了画集合圈。

生2:我学会了重叠的问题可以用画集合圈的方法来解决。

生3:集合圈的画图方法能让我们很清楚得看清每个部分有多少人和一共有多少人。

师:你们的收获还真不少同学们,集合圈可以帮我们解决生活中有重复现象的问题以后这样的问题还有很多很多,就等着同学们去发现和解决。好,这节课就上到这里,下课。

四年级数学教案设计【第三篇】

1、结合具体情境,学会用字母表示数,能用字母表示运算律和有关图形的计算公式。

2、探索用字母表示数的过程,发展抽象概括能力。

体会用字母表示数的意义,掌握用字母表示数的方法。

引导学生经历抽象概括(即符号化)的过程。

一、儿歌导入。

课件出示。

1只青蛙1张嘴。

2只青蛙2张嘴。

3只青蛙3张嘴。

4只青蛙4张嘴。

…………。

师:相信大家还能说下去。但老师现在想请大家仔细观察,这两列数有什么特点?

生1:前面是1,后面也是1;前面是2,后面也是2,……。

生2:前面的数和后面的数一样的。

师:前面的数表示什么?(青蛙的只数)。

后面的数表示什么?(有多少嘴)。

生:青蛙的只数等于嘴的数量。

师:那n只青蛙有多少张嘴?

课件出示n只青蛙n张嘴。

生:因为嘴的张数和青蛙的只数是相等的。

师:在这里,n可以表示很多数,可以是1,2,3,也可以是100,1000,等等。看来用字母表示数真的很方便。这里我们很容易就看出青蛙的数量和嘴的数量是相等的。

师:今天我们就来学习用字母表示数。

板书:用字母表示数。

二、拓展探究。

情境一:摆小棒。

师:摆一个三角形需要几根小棒?(3根)可以这样列式:13。

如果你想摆2个这样的三角形需要几根小棒,怎样列式?如果这样摆3个呢?4个呢?

生:摆2个三角形用小棒根数为23。

摆3个三角形用小棒根数为33。

摆4个三角形用小棒根数为43。

板书三角形的个数小棒根数。

113。

223。

333…………。

师:仔细观察,再思考,若摆a个三角形需要几根小棒呢?板书:a。

生1:三角形的个数3就是小棒的根数。

生2:摆a个三角形用小棒的根数为a3板书:a3。

师:在这里,字母a可以表示那些数?

生:a可以是1,2,3,……,100……,1000,……。

师:这些数我们叫做自然数,刚才的13,23,33,……,这么多的算式,只用a3就把刚才的式子的式子表示清楚了,看来字母用字母表示数真的变简单了,学习数学就是为了把复杂的问题变简单。

师:观察,能简便的是哪种运算符号?

生:乘号。

情境二:妈妈的年龄。

(1)师:上个星期日就是母亲节,我们的朋友淘气出了一个与妈妈有关的问题给大家。

课件出示:

淘气说:妈妈比我大26岁。那么当我1岁时,妈妈几岁?2岁时,妈妈几岁?3岁时?

板书。

师:观察妈妈和淘气的年龄,什么在变,什么不变?生:1,2,3,淘气的年龄在变,妈妈的年龄中+26没有变。

师:为什么1,2,3会变化,而+26不变呢?

生:说明淘气在长大,年龄变化了。妈妈比淘气大26岁是不会变的。

师:x+26中还可以看出妈妈与淘气的年龄差是——生:26。

师:x+26不仅可以表示妈妈的年龄,还可以看出妈妈与淘气的年龄差是26。

淘气:你觉得x会是哪些数?

生可能会随便说一个数字,教师随机应变。

小结:取值要符合生活实际。

(2)小组合作。

师:淘气比妈妈小26岁,当妈妈27岁时,淘气的年龄?28岁时?29岁时?请你根据之前的列表方法,用自己喜欢的字母来表示淘气的年龄。

鼓励学生先思考,再参照黑板上的表格进行列表解答淘气的年龄。

师:在这里y可能是哪些数?师:字母变了,字母的式子变了。但是他们之间的关系却没有变化。年龄差还是26岁。数学就是研究千变万化中不变的规律。

三、回顾总结。

师:今天这堂课我们学习了用字母表示数,也明白用字母表示数会给我们带来方便,含有字母的式子不但可以表示某一数量,还能从中看出两个量之间的关系。接下来我们来试一试用字母表示数。

试一试。

1、面式子能简写的用简便方法表示。

x—51bxy9+3c44。

2、1只手有5个手指;

2只手有10个手指;

n只手有个手指。

3、我们每76年才见到一次哈雷彗星,在公元s年出现后,下一次出现将是公元年。当s=1986时,再一次出现将是公元年。

4、如果用c表示正方形的周长,a表示边长,那么正方形周长公式可以写作:

四、再次感受字母“简”

1、用字母表示学过的有关图形的计算公式。

2、用字母表示你学过的运算律。

五、巩固练习。

师:完成作业纸(即书本练一练第1、2题)。

四年级数学教案设计【第四篇】

课本第66页至67页教学内容及第67页“课堂活动”中的第1、2、3题。

1、认识平角的周角,初步建立平角和周角的概念。

2、进一步认识锐角、直角和钝角,并建立锐角、直角和钝角的概念。

3、认识直角、平角、周角之间的关系。

4、通过拼一拼、量一量、剪一剪、转一转等活动培养学生操作、观察、抽象概括的能力,发展学生的空间观念。

认识平角和周角。

认识周角。

多媒体课件

一、引入课题

师:我们已经认识过的角有哪些? 指名回答,引导学生回忆认识过的角:直角、锐角和钝角。 师:你们以前是怎样辨别直角、锐角和钝角的? 教师指名回答,引导学生回忆。 师:这节课我们继续认识一些特殊角,深入认识直角、锐角和钝角。(板书课题)

二、探索新知

1、建立直角的的概念。

让学生用量角器量一量三角尺直角的度数,学生量完后,请几个同学汇报得数,通过交流,引导学生认识:一个直角是由90°。

2、认识平角,建立平角的概念。

(1)认识平角。

课件演示把两个三角尺的直角拼起来的过程。 课件演示后,让学生也按课件演示的过程把两个三角尺的直角拼起来,并看一看,议一议。 教师指出:把这两个直角拼起来可以组成一个新的角。(课件闪现新角的顶点和两条边) 师:这个角有什么特征? 指名回答。 教师指出:像这样,两条边在同一条直线上的两个角是平角。(课件闪现下图)

(2)认识平角和直角的关系。

3、建立锐角、钝角的概念。

(1)测量。

让学生用量角器量出课本第66页下半部分的三个角的度数,并记录下来。 指名汇报时,先让学生说一说这三个角分别是什么类型的角,再让学生汇报量的结果。

(2)议一议。

让学生在小组内议一议:图中左右两边的角与中间的直角有什么不同。

(3)交流归纳。

小于90°的角是锐角,大于90°而小于180°的角是钝角. 教师说明:大于180°的角不是钝角.(如181°、200°、220°就不是钝角)

(4)练习。

(课件出示) 把下面各度数所表示的角进行分类。

4、认识周角,建立周角的的概念。

(1)认识周角。

(2)认识周角、平角、直角三者之间的关系。

师:你知道一个周角是多少度吗? 引导学生推算。

1周角=( )平角=( )直角 。

1周角=( )度

三、操作活动

指导学生完成“课堂活动”中的第1、2、3题。(课件依次出示3道题)

四、全课小结

让让学生谈自己学习的收获。

五、作业

练习十三第1、2、3题。

四年级数学教案设计【第五篇】

教学目标:

1、让学生通过观察、猜测、实验、推理等发现图形排列规律。

2、使学生在教学活动中充分感受数学的价值,知道生活中事物有规律的排列隐含着数学知识,初步培养学习发现规律和欣赏数学美的意识。

3、通过数学活动,初步培养学习的想象力,培养学生创新意识。

教学重难点:

发现图形循环排列的规律。

设计理念:

在变化无穷的课堂里,到处充满着课改的气息,成功的教学不是强制性的灌输,而是激发学生的学习兴趣,促进学生动手、动脑,使学生主动发展。本节课我就从以人为本这一理念出发,变教师角色由单纯的'指导者为学生学习活动的组织者和合作者,拉近师生的心理距离、情感距离,给孩子一个自主发现与创造的空间,使他们体验成功,体验快乐,产生不断学习的内心需要。

学情分析:

鉴于学生对周期排列规律的了解,我充分为学生提供猜想、活动交流的机会,采取小组合作学习的方式,使学生在描述、思考和讨论交流活动过程中充分感受图形循环的规律。

教学方法:

对于二年级学生而言,要彻底理解图形中的循环规律不是易事。因此我在教学方法的思路体现是:

教就是为学服务的,教法应根据低年级学生好动、好奇、思维具体形象等特征。

我用游戏教学法、直观教学法、教学法等采用学生喜闻乐见的形式,提高教学效果。

说学法:

以人为本,以学生为中心,配合现代教学手段等,努力为学生营造一个主动地、生动活泼地、快乐地学习氛围。

采用小组讨论的方法各抒几见,让每一位学生都有展示自己的机会,我的教学理念:让每一位孩子在我的课堂里找到自信。

1、游戏激趣、回顾旧知。

回顾旧知,感受生活中的规律,便于在已有知识的基础上延续学习。

2、游戏激趣、引入新知。

注重创设开放的教学情景,给学生以充分的思维空间。

新课开始,我就以学生们喜爱的小动物引入,让学生观察不同的排列顺序,并让学生进行排列表演,使集中精力,自然地进入学习境地,激发学生浓厚的学习兴趣,以利于大面积调动学生的学习兴趣、情绪、注意状态等,使教师的授课能象磁铁一样吸引住学生的心魄。

3、自主探究、发现新知。

这些图案都是内容色彩丰富,都是同学们平时喜欢的。使学生在“玩中学”充分体现了“数学源于生活,又用于生活”。

使学生以xx佳的学习心理去获取知识,让他们尽快进入课堂角色,成为学习的主人。出示小东家墙面、地面问题,这一活动既激发了学生学习兴趣,又巩固了新知,同时培养了学生的动手能力和欣赏美的能力。使学生在观察思考的基础上发现规律,提示规律。

4、自由设计、深化新知。

我为学生营造了大胆发挥想象,大胆创造设计的氛围。

我希望学生在课堂上能设计出不同的循环排列规律。

反复实践、巩固新知。

“趣”是人们认识某种事物或参与某种活动的积极倾向,是学生学习的内在动力,也是推动学生探求知识和获得能力的一种强烈欲望。

感受生活中的数学和转盘游戏。设计有趣、形式多样的活动,效果绝对是事半功倍的。

总之,这节课是根据低年级儿童趋乐性理特点设计的,师生在和谐的教学活动中各有所得。课虽尽,味犹存。

四年级数学教案设计【第六篇】

北师大版小学数学四年级第七册第二单元《画角》。

本教材是在学习了量角器使用方法的基础上进行的,使学生认识到量角器不光能量角,而且还能帮助我们画角。

本班情况及学生特点分析:本班有学生19名,其中男生有12名,女生有7名,班上学习风气比较正,大多数学生能自觉学习,只有两名学生因年龄小有些吃力,学生合作意识比较强。

1、会用量角器画指定度数的角。

2、会用三角板画一些特殊度数的角。

用量角器画指定度数的角。

在使用量角器画角时,内外圈不分。

通过回忆量角器的使用方法,激励学生,量角器不光能量角,还能帮助我们准确地画角,你们愿意试试吗?自然地过渡到今天的知识点。之后给学生宽松的环境,充分的时间,让学生在自主探索中获取有用的技能和方法。同时边画边说基本步骤,培养学生的语言表达能力和逻辑思维能力。通过用三角板画一些特殊度数的角。培养学生灵活解决问题的能力。

一、复习引入。

1、学生任意画角,并量出自己所画角的度数。

教师巡视,发现问题。

2、展示量角中读错的度数,巩固量角方法,引起学生注意。

二、新课学习。

师巡视,发现:有的小组同学没有按要讲求去做,仍“各自为政”,自画自角。

2、教师再次强调要求:

大多组:由小组同学发现直接用三角板画比较快,统一采用此方法。

3、画角方法。

(1)以50度为例:

生1:错误画法。

生2:展示正确画法!

纠正画角中的问题:

a.点顶点。

b.画其中一条边。

c.确定另一条边另一条边如何确定?自学书本:p58页。

(2)展示借助三角板画角的方法。

4、小组再次画同样的角。

要求:不画直角、平角、周角这类特殊角。

5、巩固练习:

(1)画出下列度数的角:

40度140度。

(2)在点和射线上分别画出70度、120度角:

三、在教师要求下画角:

1、画60度角(你想怎么画?)。

(一般会出现有的用三角板画,有的同学用量角器画。)。

说一说,哪种更方便。

2、画75度角。

(你想怎么画?)。

(一般会出现有的用三角板画,有的同学用量角器画。)。

说一说,哪种更方便。

画150度角。

3、画15度角。

在发现用两个三角板拼不出来后,学生们都用量角器画角,只有一个学生采用展示量角器画15度角的方法。

展示用三角板“减角”的方法画。

4、画100度角。

看到100度角很多学生采用三角板拼的方法,短暂时间后放弃三角板用量角器画。

师:三角板只能拼(减)特殊角,很多角需要用量角器画。

四、课堂总结:这节课你学会了什么?

四年级数学教案设计【第七篇】

教学目标:

1、通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索求个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。

3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,体会到数学内容的奇妙、有趣。

教学重点:理解倍数和因数的意义。

教学难点:探索求一个数的倍数和因数的方法。

教学准备:每桌准各12个一样大小的正方形,每人准备一张自己学号的卡片。

设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣;学生通过独立思考、合作文流进行自主探索;教师引导学生掌握数学思考的方法。

教学过程:

1、让学生进行智力竞猜春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(部分学生能猜出三个人分别是孙子、爸爸、和爷爷)

2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请学生以韩有才为中心介绍下三个人的关系。学生可能会说出韩有才.是爸爸,韩有才是儿子的语句,这时引导学生说出谁是谁的爸爸谁是准的儿子。

3、上述父子关系是一种互相依存的关系,在表述时一定要完整。并向学生说明自然数中某两个数之间也有这种类似的依存关系倍数和因数。

设计说明:智力竞猜走学生喜欢的形式,因为每个学生都有争强好胜之心,竞猜有两个作用,一是激发学生的学习兴趣,二是以此引出相互依存的关系,为理解倍数和因数的相互依存关系作铺垫。

1、师:智慧从手指问流出,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着哪些不同的乘除法算式。

2、请学生汇报不同的摆法,以及相应的乘除法算式。(乘法算式和除法算式分开写)再向学生说明:如果一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让学生特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)

设计说明;让学生写出蕴涵的乘除法算式符合学生的知识基础,学生有的可能用乘法表示,也有的可能用除法表示;让学生将旋转后相同的去掉,这是一次简化,很多学生并不知道,需要指导,这样可以使学生认识到事物的本质。

3、让学生一起看乘法算式43=12,向学生指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。

4、先请一个学生站起来说一说.然后同桌的同学再互相说一说。

5、让学生仿照说出62=12和121=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。

6、学生相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。学生可能会出现0( )=0的情况,借此向学生说明我们研究因敷和倍数一般指不是0的自然数。

设计说明:倍数和因数是全新的概念,需要教师的传授、讲解,需要学生的适当记忆重复、仿照。当然,要使学生真正理解还必须举一反三,通过互相举例可以逐步完善学生对倍数和因数的认识,同时使学生明确倍数和因数的研究范围。

7、以43=12与123=4为例,向学生说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让学生试一试其他几个除法算式中的关系。

8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数

54=20 357=5 3+4=7

(1)学生回答后引发学生思考:能不能说20是倍数,4是因数。使学生进一步理解倍数是两个数之间的一种相互依存的关系,必须说哪个是哪个的倍数,因数也同样如此。

(2)通过3+4=7使学生进一步理解倍数和因数都是建立在乘法或除法的基础之上的。

设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。

1、找一个数的因数。

(1)联系板书的乘除法算式观察思考12的因数有哪些,井想办法找出15的所有因数。

(2)学生独立思考,明白根据一个乘法(除法)算式可以找出15的两个因数,在学生充分交流的基础上引导学生有条理的一对一对说出15的因数。

(3)用一对一对的方法找出36的所有因数。可能有的学生根据乘法算式找的,也有的学生是根据除法算式找的,都应该给予肯定。

(4)引导学生观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它本身。

设计说明:先安排学生找一个数的因数可以使学生利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。学生交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导学生一对一对的找是必要的,它可以培养学生的有序思考。最后引导学生观察。使学生自主发现、归纳出一个数的因数的某些特征。

2、找一个数的倍数。

(1)让学生找3的倍数,比一比谁找得多。

(2)学生汇报后,引导学生有序思考,并得出3的倍数可以用3乘连续的自然数1、2、3,3的倍数的个数是无限的,所以写3的`倍数时要借助省略号表示结果。

(3)找出2的倍数和5的倍数,并引导学生观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

设计说明:让学生比一比谁找的倍数多,可以使学生产生认知冲突,认识到一个数的倍数个数是无限的,在学生汇报后同样需要引导学生的有序思考,需要引导学生自主发现、归纳一个数倍数的特征。

1、想想做做的第l题。学生表述后强调哪个是哪个的倍数(或因数)。

设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使学生感悟到其中蕴藏着求一个数倍数和因数的方法,以及倍数和因数的某些特征。第4题通过游戏活动进一步激发学生持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。

1、通过这节课的学习你有什么收获?向你的同伴介绍一下。

2、生活中许多现象与我们学习的倍数和因数的知识有关,课后同学们可以利用今天所学的知识探索一下1小时等于60分的好处。通过探索使学生明白由于60的因数是两位数中最多的,可以方便计算。

设计说明:向同伴介绍自己的收获可以将课堂中学到的知识进行自我梳理,同时通过探索1小时等于60分的好处,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展学生的知识面,使学生认识到数学知识的应用价值。

-->

-->

-->

-->

-->

-->

-->

四年级数学教案设计【第八篇】

:1。

1、结合具体情境,探索加减法的计算方法,正确计算两位小数的加减法。

1、能结合具体情景,提出数学问题;能运用小数加见方解决日常生活中简单的实际问题,在解决问题的过程中培养估算的意识和能力。

一、创设问题情境。

二、自主探究,构建数学模型。

3、讨论:为什么要把小数点对齐?

5、第12页第3题。怎么样才能写得准确呢?看一看,和什么有关系?

6、第12页第4题。觉得要比较他们的身高最大的麻烦是什么?单位问题,不同的单位很难比较。自己想办法比较,把他们从矮到高的顺序排列起来。

三、游戏。

1、第13页第6题。

四、总结。

相关推荐

热门文档

48 1630894