首页 > 公文资料 > 其它公文 >

高中数学教案教案及教案精编5篇

网友发表时间 2094807

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“高中数学教案教案及教案精编5篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

高中数学教案教案及教案【第一篇】

3.进一步提高问题探究意识、知识应用意识和同伴合作意识。

问题的提出与解决。

如何进行问题的探究。

启发探究式。

研究方向提示:

1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;

2.研究所给数列的项之间的关系;

3.研究所给数列的子数列;

4.研究所给数列能构造的新数列;

5.数列是一种特殊的函数,可以从函数性质角度来进行研究;

6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

课堂小结:

1.研究一个数列可以从哪些方面提出问题并进行研究?

2.你最喜欢哪位同学的研究?为什么?

开展研究性学习,培养问题解决能力。

一、对“研究性学习”和“问题解决”的认识研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。

“问题解决”(problemsolving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。

问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。

二、“问题解决”课堂教学模式的建构与实践以研究性学习活动为载体,以培养问题解决能力为核心的'课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。

(一)关于“问题解决”课堂教学模式。

通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。

(二)数学学科中的问题解决能力的培养目标。

数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。

(三)“问题解决”课堂教学模式的教学流程。

(四)“问题解决”课堂教学评价标准。

1.教学目标的确定;

2.教学方法的选择;

3.问题的选择;

4.师生主体意识的体现;

5.教学策略的运用。

(五)了解学生的数学问题解决能力的途径。

(六)开展研究性学习活动对教师的能力要求。

高中数学教案教案及教案【第二篇】

了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

自学质疑

渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。

2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是

3.经过两点 的双曲线的标准方程是 。

4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。

5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为

例题精讲

1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。

2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。

3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。

矫正巩固

1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。

2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。

3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是

4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。

迁移应用

2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。

3. 双曲线 的焦距为

4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则

5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .

高中数学教案教案及教案【第三篇】

教学内容:

整十数加一位数及相应的减法。

教学目标:

1、让学生经历两位数加、减一位数的口算方法的探索过程,能比较熟练的进行口算。并了解加、减发算式中各部分的名称。

2、在根据数的组成探索口算方法的过程中,体会知识间的内在联系,发展思维能力和口算能力。

3、培养用数学的观念看周围的事物的意识,培养同学之间的相互合作、交流的态度。

教学重难点:

两位数加、减一位数的口算方法。

教学准备:

课件。

教学过程:

2个十和5个一合起来是(),8个十和4个一合起来是()。95里面是由()个十和()个一组成。81里面有()个十和()个一。

1、出示32页情景图。

2、提问:你能从图中获得哪些数学信息?能提出一个数学问题吗?

学生回答:梳理问题。

(1)一共有多少个桃?

(2)一共有34个桃,去掉框里的30个,还剩多少个桃?

3、怎样列式?

(1)先想一想。

(2)小组交流。

小组内交流自己的算法。

(3)指名小组汇报。

结合学生回答小结:根据看图,数出来的;用小棒摆出来的;根据数的组成来思考的。34+4就是把3个十和4个一合起来,是34;34-30就是从34里去掉3个十,还剩4个一,是4。

4、解答“试一试”。

提问:4+30等于多少,你又可以怎样算?

(1)先想一想。

(2)小组交流。

小组内交流自己的算法。

(3)指名小组汇报。

4个一和3个十和起来是34;因为30+4=34,所以4+30=34。

谈话:“34-4”你会算吗?填在书上,并轻声地说说你是怎样想的。

指名回答,结合学生回答适当补充。

5、介绍算式中各部分的名称。

(1)介绍加法算式中各部分的名称。

谈话:每个小朋友都有自己的名子,在每一个算式中每个部分也都有各自的名子。在加法算式30+4=34中,相加的两个数都叫做加数。两个加数相加的结果叫做和。

(2)介绍减法算式各部分的名称。

(3)指名说出算式4+30=34,34-4=30中各部分的名称。

1、“想想做做”第1题。

(1)出示图,让学生说图意。

(2)根据图意,列出四个算式。

(3)说说每道算式表达什么意思。

2、“想想做做”第2题。

先独立完成,再说说怎样想的?

提问:根据60+3=63你能想到其他三个算式吗?

3、“想想做做”第3题。

先独立完成,再说说是怎样想的,集体核对结果。

4、“想想做做”第4题。

根据表中第一行的名称说说左表用什么方法计算,右表用什么方法计算。

5、“想想做做”第5题。

先了解“相邻数”是什么意思,再写数交流。

6、“想想做做”第6、7题。

先说说每题中的.已知条件和要求的问题。

再自己独立完成。

同桌交流并说说是怎样想的。

高中数学教案教案及教案【第四篇】

理解数列的概念,掌握数列的运用。

理解数列的概念,掌握数列的运用。

知识点精讲。

1、数列:按照一定次序排列的一列数(与顺序有关)。

2、通项公式:数列的.第n项an与n之间的函数关系用一个公式来表示an=f(n)。

(通项公式不)。

3、数列的表示:。

(1)列举法:如1,3,5,7,9……;。

(2)图解法:由(n,an)点构成;。

(3)解析法:用通项公式表示,如an=2n+1。

5、任意数列{an}的前n项和的性质。

高中数学教案教案及教案【第五篇】

(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

1.新课导入

在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

学生举例:平行四边形的对角线互相平. ……(1)

两直线平行,同位角相等.…………(2)

教师提问:“……相等的角是对顶角”是不是命题?……(3)

(同学议论结果,答案是肯定的)

教师提问:什么是命题?

(学生进行回忆、思考.)

概念总结:对一件事情作出了判断的语句叫做命题.

(教师肯定了同学的回答,并作板书.)

由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投影片,和学生讨论以下问题.)

例1 判断以下各语句是不是命题,若是,判断其真假:

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

(1)什么叫做命题?

可以判断真假的语句叫做命题.

判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍逻辑联结词“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

对“或”的理解,可联想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.

对“且”的理解,可联想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 这两个条件都要满足的意思.

对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .

命题可分为简单命题和复合命题.

不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

(4)命题的表示:用 , , , ,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式.

给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .

在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

3.巩固新课

例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1) ;

(2)非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若 ,则 .

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

例3 写出下表中各给定语的否定语(用课件打出来).

若给定语为

等于

大于

都是

至多有一个

至少有一个

至多有个

其否定语分别为

分析:“等于”的否定语是“不等于”;

“大于”的否定语是“小于或者等于”;

“是”的否定语是“不是”;

“都是”的否定语是“不都是”;

“至多有一个”的否定语是“至少有两个”;

“至少有一个”的否定语是“一个都没有”;

“至多有 个”的否定语是“至少有 个”.

(如果时间宽裕,可让学生讨论后得出结论.)

置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)

4.课堂练习:第26页练习1

5.课外作业:第29页习题

相关推荐

热门文档

70 2094807