首页 > 学习资料 > 教案大全 >

高中数学精编教案 高中数学教案(优推5篇)

网友发表时间 2593999

【导言】此例“高中数学精编教案 高中数学教案(优推5篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高中数学优秀教案【第一篇】

教学目标:

1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2、会求一些简单函数的反函数。

3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

一、创设情境,引入新课

1、复习提问

①函数的概念

②y=f(x)中各变量的意义

2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3、板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1、问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2、问题组二:

(1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(3)函数()的定义域与函数()的值域有什么关系?

3、渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1、(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到"用x表示自变量,y表示函数"的习惯,将中的x与y对调写成。

2、引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3、两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

4、函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值域

C

A

四、应用解题,总结步骤

1、(投影例题)

例1求下列函数的反函数

(1)y=3x—1(2)y=x1

例2求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2、总结求函数反函数的步骤:

1°由y=f(x)反解出x=f(y)。

2°把x=f(y)中x与y互换得。

3°写出反函数的定义域。

(简记为:反解、互换、写出反函数的定义域)例3

(1)有没有反函数?

(2)的反函数是________。

(3)(x<0)的反函数是__________。

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1、已知函数y=f(x)存在反函数,求它的反函数y=f(x)

(1)y=—2x3(xR)(2)y=—(xR,且x)

(3)y=(xR,且x)

2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

六、作业

习题第1题,第2题

进一步巩固所学的知识。

高中数学优秀教案【第二篇】

第一章 有理数

课题: 正数和负数(1)

学习目标:1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

重点难点:正数和负数概念

导学指导:

一、知识链接:

1、小学里学过哪些数请写出来: 、 、 。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习

1、正数与负数的产生

(1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。

(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示。

(3)阅读P3练习前的内容

3、正数、负数的概念

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

课堂练习:

1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数: , ,,+3065,0,-239;

则正数有_____________________;负数有____________________。

4.下列结论中正确的是 ( )

既是正数,又是负数 是最小的正数

是最大的负数 既不是正数,也不是负数

5.给出下列各数:-3,0,+5, ,+, ,20xx,+20xx;

其中是负数的有 ( )

个 个 个 个

要点归纳:

正数、负数的概念:

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

拓展训练:

1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地。

3.甲比乙大-3岁表示的意义是______________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

总结反思:

课题:正数和负数(2)

学习目标:

1、会用正、负数表示具有相反意义的量;

2、通过正、负数学习,培养学生应用数学知识的意识;

学习重点:用正、负数表示具有相反意义的量;

学习难点:实际问题中的数量关系;

导学指导

一、知识链接。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。

问题:零为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明。

参考例子:温度表示中的零上,零下和零度。

二。自主探究

问题:(课本第4页例题)

先引导学生分析,再让学生独立完成

例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少%, 德国增长%,

法国减少%, 英国减少%,

意大利增长%, 中国增长%.

写出这些国家20xx年商品进出口总额的增长率;

解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;

2)六个国家20xx年商品进出口总额的增长率:

美国___________ 德国__________

法国___________ 英国__________

意大利__________ 中国__________

高中数学优秀教案【第三篇】

一、教材分析

1、教材的地位和作用

算术平均数与几何平均数是不等式这一章的核心,对于不等式的证明及利用均值不等式求最值等应用问题都起到工具性作用。通过本章的学习有利于学生对后面不等式的证明及前面函数的一些最值值域进一步研究,起到承前启后的作用。

2、教学内容

本节课的主要教学内容是通过现实问题进行数学实验猜想,构造数学模型,得到均值不等式;并通过在学习算术平均数与几何平均数的定义基础上,理解均值不等式的几何解释;与此同时在推理论证的基础上学会应用。

3、教学目标

教学目标是基于对教材,教学大纲和学生学情的分析相应制定的。在新课程理念的指导下,更为关注学生的合作交流能力的培养,关注学生探究问题的习惯和意识的培养。因此,结合本节课内容与实验,设计本节课教学目标如下:

知识与技能:对于算术平均数与几何平均数的理解以及定理的掌握;

过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯;引导学生通过问题设计,模型转化,类比猜想实现定理的发现,体验知识与规律的形成过程;通过模型对比,多个角度,多种方法求解,拓宽学生的思路,优化学生的思维方式,提高学生综合创新与创造能力。

情感态度价值观:培养学生生活问题数学化,并注重运用数学解决生活中实际问题的习惯,有利于数学生活化,大众化;同时通过学生自身的探索研究领略获取新知的喜悦。

教学重点:算术平均数与几何平均数的理解以及定理的掌握;

教学难点:算术平均数与几何平均数以及定理发现探索过程的构建及应用;

教学关键:学生对于实验的实践及函数模型的构建。

教学模式:探究式合作式

二、学情分析

学生已经掌握了不等式的基本性质,高中的学生已经具有较好的逻辑思维能力,因此他们希望能够自己探索,发现问题和解决问题。现在经历课改的学生不仅仅停留在接受学习的框框内,他们更需要充满活力与创造发现的课堂。课堂实验可能存在问题:对EXEL软件不够熟练。对于模型构造思路不够清晰。

三、教法分析

不同于传统的讲授课,基于数学实验的教学实践课,教师的教应有瞻前性,应该在实验课前让学生对于软件的应用有充分的准备,并进行分组讨论得到数学模型。依据前苏联教育家赞可夫"问题教学法"确定本堂课所采用的教学方法是"生活中发现问题,实验中分析问题,设计中解决问题,总结问题,论证后延拓问题"五环节教学方法,运用这种教学方法能更好地使学生经历实验的发生,发展和"再创造"的全过程,主动地吸收新知识的精髓。

四、学法指导

新的教学理念下课堂教学已经是一个多维度多中心的整体。教师学生都是参与课堂的主体,而教学设计与实验则是课堂的载体,它将调度师生共同参与教学活动,并在参与中尽量获取知识与能力上的探讨,共鸣与思维能力的升华与内化。教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据数学实验课的教学特点,这节课主要是教给学生"动手做,动脑想;多训练,多实践。"的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体。通过这样使学生"学"有新"思","思"有所"得","练"有所"获"。学生才会学习数学中体验发现的成就感,从而提高学生学习数学的兴趣;在此过程中,学生学会了交流合作,并学以致用,才能适应素质教育下培养"创新型"人才的需要。

五、实验内容与实验程序:

问题:元旦晚会我们学校即将举行游园活动,每个班级有一条20米长的红丝带在灯光球场围成一矩形的场地活动,请问大家应该怎么围才能使我们班级的场地面积最大

1问题提炼:(用数学语言表达)

2实验步骤:

A请根据题目要求选择整数长度为边,按照制图方法绘制5个矩形,并比较面积

B把上面的矩形按照边长与面积的不同列表归纳

长度(m)

宽度(m)

面积()

C根据以上表格数据,请用exel软件作出柱状图,并思考以下问题:

(1)在边长变化过程中,面积的大小变化情况与趋势

(2)由这种趋势请同学们自己猜想总结一个结论。

3实验的感言与进一步构造数学模型的思考。

六、教学流程

1,生活问题创设情景:通过生活问题设置情景并构建实验

2,构建模型解决问题:学生通过合作讨论构建函数及不等式解决问题并发现均值不等式

3,定理总结结论表述:用数学语言表达均值不等式并用文字语言总结陈述

4,定理论证课堂练习:用几何与代数方法分别论证结论并进行课堂练习

5,学习感言教学小结:由学生发表学习感言,老师总结本堂课的学习过程与学习方法。学习过程:发现问题――实验猜想――构建模型――发现规律――论证再运用;学习方法:协作探讨,自主实验,猜想证明,发现应用。

七、教学反馈评价

本节课利用生活问题设计数学实验,是现阶段新课程改革的新试点,是学生进行数学研究性学习与自主学习的一重要手段与途径。

本节课通过生活问题的合作交流探讨,学生学习方式有了新的改变;在实验的构造过程,学生的自主性,实践性,创造性得到锻炼与提高;在实验过程中学生的分工合作精神更是得到充分的考验与体现,学生学会了合作与分享;通过对数学模型的构建,学生更加体会进行自主研究,合作学习的乐趣,同时培养了学生创新精神与发现能力。

当然本节课的一个突出点在于从书本某一个知识作为切入点构造生活问题,设计数学实验,创造性地对教材进行再利用,再编改。使得学生在课堂,课外自主学习与接受知识的方法途径更加多样,参与课堂的方式更加深入,更容易通过自己探究体验发现的乐趣。这是传统教学所没办法达到的。

高中数学优秀教案【第四篇】

教学准备

教学目标

1.数列求和的综合应用

教学重难点

2.数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和Tn

4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn ,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值

.已知数列{an},an∈N,Sn= (an+2)2

(1)求证{an}是等差数列

(2)若bn= an-30 ,求数列{bn}前n项的最小值

0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12 .某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=

销售量g(t)与时间t的函数关系是

g(t)= -t/3 +109/3 (0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的'讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学优秀教案【第五篇】

一、教学目标

知识与技能:

理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:

1、提高学生的推理能力;

2、培养学生应用意识。

二、教学重点、难点:

教学重点:

任意角概念的理解;区间角的集合的书写。

教学难点:

终边相同角的集合的表示;区间角的集合的书写。

三、教学过程

(一)导入新课

1、回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课

1、角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:

注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?

2、象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?

相关推荐

热门文档

20 2593999