首页 > 学习资料 > 教案大全 >

高中数学精编教案 高中数学教案【优推4篇】

网友发表时间 3014833

【导言】此例“高中数学精编教案 高中数学教案【优推4篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高中数学教案【第一篇】

教学目标

熟练掌握三角函数式的求值

教学重难点

熟练掌握三角函数式的求值

教学过程

知识点精讲

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

三角函数式的求值的类型一般可分为:

(1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

三角函数式常用化简方法:切割化弦、高次化低次

注意点:灵活角的变形和公式的变形

重视角的范围对三角函数值的影响,对角的范围要讨论

例题选讲

课堂小结

三角函数式的求值的。关键是熟练掌握公式及应用,掌握公式的逆用和变形

三角函数式的求值的类型一般可分为:

(1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

三角函数式常用化简方法:切割化弦、高次化低次

注意点:灵活角的变形和公式的变形

重视角的范围对三角函数值的影响,对角的范围要讨论

高中数学教案【第二篇】

教学目标

(1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

(2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;

(3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的'数学思想,提高学生“建)山草香○(模”和解决实际问题的能力;

(4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.

重点难点

理解二元一次不等式表示平面区域是教学重点。

如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

教学步骤

(一)引入新课

我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?

高中数学优秀教案【第三篇】

教学目标

理解数列的概念,掌握数列的运用

教学重难点

理解数列的概念,掌握数列的。运用

教学过程

知识点精讲

1、数列:按照一定次序排列的一列数(与顺序有关)

2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

(通项公式不)

3、数列的表示:

(1)列举法:如1,3,5,7,9……;

(2)图解法:由(n,an)点构成;

(3)解析法:用通项公式表示,如an=2n+1

(4)递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1

4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,__数列

5、任意数列{an}的前n项和的性质

高中数学教学优秀教案【第四篇】

学习目标

明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题。

学习过程

一、学前准备

复习:

1.(课本P28A13)填空:

(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;

(3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

(4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

二、新课导学

探究新知(复习教材P14~P25,找出疑惑之处)

问题1:判断下列问题哪个是排列问题,哪个是组合问题:

(1)从4个风景点中选出2个安排游览,有多少种不同的方法?

(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

应用示例

例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

例位同学站成一排,分别求出符合下列要求的不同排法的种数。

(1) 甲站在中间;

(2)甲、乙必须相邻;

(3)甲在乙的左边(但不一定相邻);

(4)甲、乙必须相邻,且丙不能站在排头和排尾;

(5)甲、乙、丙相邻;

(6)甲、乙不相邻;

(7)甲、乙、丙两两不相邻。

相关推荐

热门文档

20 3014833