大数据导论心得体会范文【推荐4篇】
【写作参考】阿拉题库漂亮网友为您精选的“大数据导论心得体会范文【推荐4篇】”文档资料,供您写作参考阅读之用,希望对您有所帮助,喜欢就复制下载吧!
大数据导论心得体会【第一篇】
时光荏苒,如白驹过隙般匆匆而去,眼看的一年实习生活马上就要成为美好的回忆。在这短短一年的时间里我感觉自己成长了许多,从象牙塔迈出的第一步走的特别的稳重,感谢学校给我提供了一个努力拼搏的舞台,让我学会了如何面对这个真实的社会,实现了从在校学子向职场人士的转变。
实习是继中考后又一个人生的十字路口,它意味着人生一个新时期的到来——告别学校走入社会。社会是个大的集合,不管是以前的学校还是现在的实习单位都同属这个集合。这几个月来,给我感觉学校纯一点,单位复杂一点。不过我知道不论学校还是单位其实都是社会的缩影。实习的真正目的就是让我们这些在校的学生走入社会。社会是形形色色、方方面面的,你要学会的是适应这个社会而不是让这个社会适应你。
刚刚走进社会不适应是正常的。人有的时候很奇怪:心情或者更准确地说是热情往往会因时间、环境、所经历的事而起伏。就像我对境界一词的理解:人与他所受教育、所处环境、所经历对事物的理解、判断、预知的程度就是这个人的境界。
作为一名中专生,专业需求的建筑认识实训开始了,我们全专业的同学在XX的各大建筑工地认识实习,对于我当初选择土木工程这样的专业,说真的我并不知道什么是土木工程。现在我对土木工程有了基本的感性认识了,我想任何事的认识都是通过感性认识上升到理性认识的,这次认识实习应该是一个锻炼的好机会!
土木工程是建造各类工程设施的学科、技术和工程的总称。它既指与与人类生活、生产活动有关的各类工程设施,如建筑公程、公路与城市道路工程、铁路工程、桥梁工程、隧道工程等,也指应用材料、设备在土地上所进行的勘测、设计、施工等工程技术活动。
我应该知道现在的我还不够成熟,如果说人生是一片海洋,那么我应该在这片海洋里劈波斩浪,扬帆远航而不是躲在避风港里。只要经历多了,我就会成熟;我就会变强。我相信。那时的成功是领导、师傅们给我鼓励,是实习的经历给我力量,所以我感谢领导师傅还有我的好朋友们,也感谢学校给我这次实习的机会。
一年的实习生活中,紧张过,努力过,醒悟过,开心过。这些从为有过的经历让我进步了,成长了。学会了一些在学校从未学过以后也学不到的东西,也有很多的感悟。
短短一年时间,我收获了诚挚的友情,结识了和我一同来的实习生;我收获了宝贵的经验,收获了真正的成熟
大数据导论心得体会【第二篇】
一、大数据背景
2012年以来,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。“大数据”时代降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。
数据信息量的迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。
“大数据”来临是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。
二、大数据影响
随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为万台,高于全球每天出生的婴儿数量万……
三、数据价值
一分钟内,微博推特上新发的数据量超过10万;社交网络“脸谱”的浏览量超过600万……
这些庞大数字,意味着什么?
它意味着,一种全新的致富手段也许就摆在面前,它的价值堪比石油和黄金。
事实上,当你仍然在把微博等社交平台当作抒情或者发议论的工具时,华尔街的敛财高手们却正在挖掘这些互联网的“数据财富”,先人一步用其预判市场走势,而且取得了不俗的收益。
让我们一起来看看——他们是怎么做的。
这些数据都能干啥。具体有六大价值:
1、华尔街根据民众情绪抛售股票;
2、对冲基金依据购物网站的顾客评论,分析企业产品销售状况;
3、银行根据求职网站的岗位数量,推断就业率;
4、投资机构搜集并分析上市企业声明,从中寻找破产的蛛丝马迹;
5、美国疾病控制和预防中心依据网民搜索,分析全球范围内流感等病疫的传播状况;
6、美国总统奥巴马的竞选团队依据选民的微博,实时分析选民对总统竞选人的喜好。
四、可视化
“数据是新的石油。”亚马逊前任首席科学家AndreasWeigend说。Instagram以10亿美元出售之时,成立于1881年的世界最大影像产品及服务商柯达正申请破产。
大数据是如此重要,以至于其获取、储存、搜索、共享、分析,乃至可视化地呈现,都成为了当前重要的研究课题 。
“当时时变幻的、海量的数据出现在眼前,是怎样一幅壮观的景象?在后台注视着这一切,会不会有接近上帝俯视人间星火的感觉?”
,美国洛杉矶就有企业宣称,他们将全球夜景的历史数据建立模型,在过滤掉波动之后,做出了投资房地产和消费的研究报告。
在数据可视化呈现方面,有这么一个故事,一位在美国物流部门工作的小伙,被Facebook高价挖角,进入了其数据研究小组。他后来惊讶地发现,里面全是来自物流企业、供应链方面的技术人员和专家,原来是“Facebook想知道,能不能用物流的角度和流程的方式,分析用户的路径和行为的目的。”
五、三大案例
1、2012年3月22日,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。奥巴马政府将数据定义为“未来的新石油”,并表示一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,未来,对数据的占有和控制甚至将成为陆权、海权、空权之外的另一种国家核心资产。
2、联合国也在2012年发布了大数据政务白皮书,指出大数据对于联合国和各国政府来说是一个历史性的机遇,人们如今可以使用极为丰富的数据资源,来对社会经济进行前所未有的实时分析,帮助政府更好地响应社会和经济运行。
3、而最为积极的还是众多的IT企业。麦肯锡在一份名为《大数据,是下一轮创新、竞争和生产力的前沿》的专题研究报告中提出,“对于企业来说,海量数据的运用将成为未来竞争和增长的基础”,该报告在业界引起广泛反响。
IBM则提出,上一个十年,他们抛弃了PC,成功转向了软件和服务,而这次将远离服务与咨询,更多地专注于因大数据分析软件而带来的全新业务增长点。IBM执行总裁罗睿兰认为,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”
在国内,百度已经致力于开发自己的大数据处理和存储系统;腾讯也提出2013年已经到了数据化运营的黄金时期,如何整合这些数据成为未来的关键任务。
事实上,自2009年以来,有关“大数据” 主题的并购案层出不穷,且并购数量和规模呈逐步上升的态势。其中,Oracle对Sun、惠普对Autonomy两大并购案总金额高达176亿美元,大数据的产业价值由此可见一斑。
六、提供依据编辑
大数据是信息通信技术发展积累至今,按照自身技术发展逻辑,从提高生产效率向更高级智能阶段的自然生长。无处不在的信息感知和采集终端为我们采集了海量的数据,而以云计算为代表的计算技术的不断进步,为我们提供了强大的计算能力,这就围绕个人以及组织的行为构建起了一个与物质世界相平行的数字世界。
大数据虽然孕育于信息通信技术的日渐普遍和成熟,但它对社会经济生活产生的影响绝不限于技术层面。在本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析做出,而不是像过去更多凭借经验和直觉做出。
事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。而在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如卓越亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。
七、应对措施
一个好的企业应该未雨绸缪,从现在开始就应该着手准备,为企业的后期的数据收集和分析做好准备,企业可以从下面六个方面着手,这样当面临铺天盖地的大数据的时候,以确保企业能够快速发展,具体为下面六点。
1、目标
几乎每个组织都可能有源源不断的数据需要收集,无论是社交网络还是车间传感器设备,而且每个组织都有大量的数据需要处理,IT人员需要了解自己企业运营过程中都产生了什么数据,以自己的数据为基准,确定数据的范围。
2、准则
虽然每个企业都会产生大量数据,而且互不相同、多种多样的,这就需要企业IT人员在现在开始收集确认什么数据是企业业务需要的,找到最能反映企业业务情况的数据。
3、重新评估
大数据需要在服务器和存储设施中进行收集,并且大多数的企业信息管理体系结构将会发生重要大变化,IT经理则需要准备扩大他们的系统,以解决数据的不断扩大,IT经理要了解公司现有IT设施的情况,以组建处理大数据的设施为导向,避免一些不必要的设备的购买。
4、重视大数据技术
大数据是最近几年才兴起的词语,而并不是所有的IT人员对大数据都非常了解,例如如今的Hadoop,MapReduce,NoSQL等技术都是2013年刚兴起的技术,企业IT人员要多关注这方面的技术和工具,以确保将来能够面对大数据的时候做出正确的决定。
5、培训企业的员工
大多数企业最缺乏的是人才,而当大数据到临的时候,企业将会缺少这方面的采集收集分析方面的人才,对于一些公司,特别是那种人比较少的公司,工作人员面临大数据将是一种挑战,企业要在平时的时候多对员工进行这方面的培训,以确保在大数据到来时,员工也能适应相关的工作。
6、企业需培养三种能力
随着大数据时代的到来,企业应该在内部培养三种能力。第一,整合企业数据的能力;第二,探索数据背后价值和制定精确行动纲领的能力;第三,进行精确快速实时行动的能力。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进企业快速发展。
大数据导论心得体会【第三篇】
城市治理是新时代国家治理的重大课题。疫情大考下,大数据已然成为各个城市应对公共卫生事件的重要选择,大数据对于城市人员流动管理、城市民生服务保障、疫情发展趋势及潜在风险研判、疫情处置防控举措落实等都起到重要作用。
但是,数据预警和决策的“后知后觉”、城市公共基础数据的不完善、实时定位追踪下数字立法不完备的隐忧、谣言四起时权威数字信息平台的失位等,都暴露出当前技术运用在城市治理中的问题。
因此,必须要善用大数据这一国家治理“利器”,趋利避害,推动城市治理体系和治理能力现代化。
善用大数据提升城市治理现代化水平,核心是坚持“以人民为中心”的价值理念。
城市是人民的城市,运用大数据实现“城市之治”,本质就是借力数字化信息技术让人们的城市生活更加便利、安全和美好。疫情之下,基于大数据技术的远程医疗服务在很多城市推行,实时疫情数据信息地图的普遍应用,赋予了大数据这一技术工具温度和能量,体现了大数据赋能城市治理现代化的发展方向。
善用大数据提升城市治理现代化水平,就是深入挖掘大数据的人文价值,找准数据服务群众需求的突破点,解决群众急事难事愁事烦心事。
善用大数据提升城市治理现代化水平,实质是要建构政府治理的大数据思维。
简单地说,大数据思维就是“用数据说话、用数据决策、用数据管理、用数据创新”,通过对海量、完备、多样化的大数据进行分析、处理、挖掘,进而揭示城市治理相关问题的特征、规律与前景。作为城市治理的主导者,政府需要充分运用大数据理念、技术与思维方法,实现城市治理决策科学化、政府服务高效化、社区治理精准化。
要积极制定完善城市大数据治理发展规划,打造大数据的施政平台,完善大数据基础设施,从全局长远上谋划城市大数据发展规划。要树立大数据与城市政务服务相融合的理念,正确看待大数据在城市治理现代化中的重要作用,着力将大数据广泛融入城市政务、城市交通、城市公共安全、城市生态环保、教育服务等公共领域,提升城市治理效能。
善用大数据提升城市治理现代化水平,目标是实现公共服务供给的高效化、精细化和普惠化。基本公共服务的品质与人民群众的生活质量息息相关。
针对当前存在的基本公共服务供给与需求脱节和错位等矛盾,善用大数据改善和优化公共服务是明智选择。大数据的核心价值在于通过对巨量数据资源进行收集、分析、存储、管理,对公众多样化、个性化需求进行精准识别、及时预测和有效回应,从而不断提升公共服务智能化水平。
善用大数据提升城市治理现代化水平,就是要用大数据深化公共服务领域的改革,实现技术创新、制度创新、管理创新的辩证统一,加快推进流程再造,补足公共服务短板,提升公共服务水平。
善用大数据提升城市治理现代化水平,根本是要完善大数据治理体制机制。更好发挥大数据服务城市治理的作用,要建立健全数据库开放共享机制,避免信息孤岛和信息打架现象,树立信息共享思维,加快实现各部门、各区域、各行业数据资源有序开放共享。
大数据是一把双刃剑,既是提升城市治理现代化水平的利器,又存在威胁信息安全的风险,要加强法律制度建设,以法定的形式明确政府、企业和相关人员的数据采集权和数据有限使用的边界,确保个人隐私和国家信息安全得到保护,切实处理好数据治理与数据安全之间的关系。
大数据导论心得体会【第四篇】
这么多年来,看了很多东西,如今回过头来发现,好像什么都忘了,真是悲剧,所谓读书破万卷,下笔如有神或许是不对的,还是需要下笔勤快,所以决定从这里开始。
这些年对于技术的发展,我是没有跟上,如今发现即便是对于投资,技术对于我们生活的改变太大,而自己身在这个技术浪潮的前沿,还是需要跟上步伐。——前??
大数据这个概念已经提了很久,我也一直疏忽了对于它的理解。看完《大数据时代》,再结合如果工作上对于大数据的理解,顿时发现数据的重要性,以前在这方面的确没有足够的思想意识。
整本书来说,我觉得最关键的三个点是前面几个章节:
1、要总体,不要随机样本:从小对于统计学相关的学习,基本都是从样本出发,理论的基础在于如何随机的足够分散的选取样本,这可是技术活加直觉。而对于大数据来说,要的就是总体,本质上来说,总体样本的确更能准确找到结果。但是对于统计来说,总体的分析增加了数据分析的难度,不仅数据核对不好进行,一旦出现数据污染,准确度就会大打折扣,而且进行数据回溯的时候,也无法准确确认问题,而这一点也是后面相关性上问题;
2、要混乱,而不是精确:这里主要想说明的是希望数据的多样性,尽量将相关数据都收集起来,不管是结构化的还是非结构化的。这样就不可避免的最终结果的不准确性。大数据更多的是从一个总体数据中说明以后概率事件,既然是概率,也就可以理解无法精确。这里有个点的说明,我觉得需要提一下,大数据算法更倾向于“简单”,而不是复杂,这个倒是出乎我的意外。
3、要相关性,而不是因果:从我对于知识获取的过程来说,我是不同意这个观点,从人体对于知识的理解,还是要从因果论出发,没有因果论,就会变成瞎子。而作者的观点上来说,原因可能还是从大数据本身的非准确性,一旦找到合适的算法,找到相关性,向上追述原因本身就很难。但是从举的示例上看,相关性的确认是一个非常大的工程,基本就是使用排举法,一个一个试。
所以,对于大数据来说,最重要的三点是:
1、数据——得到更多数据;
2、算法——建立更快的算法体系;
3、思维——寻找数据间更多的相关性。
对于数据最终的走向,我同意书中所提到的政府管理的观点,既然都是以“石油”的标准来看待数据,政府统一管理也就是必然的了。而且对于政府来说,掌握更多数据也有利于其管理及维护社会的稳定性。而对于社会道德方面的论述,我不想多说什么,时代发展是不会被道德绑架的。
所以最后,想要建立对于大数据的思维,《大数据时代》还是值得一读,里面的很多示例也非常不错。如人际关系这一块,也是出乎我的意料。